On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 75-82
Voir la notice de l'article provenant de la source Library of Science
Gutin and Rafiey [Multipartite tournaments with small number of cycles, Australas J. Combin. 34 (2006) 17–21] raised the following two problems: (1) Let m ∈ 3, 4, . . ., n. Find a characterization of strong n-partite tournaments having exactly n − m + 1 cycles of length m; (2) Let 3 ≤ m ≤ n and n ≥ 4. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly n − m + 1 cycles of length m for two values of m? In this paper, we discuss the strong n-partite tournaments D containing exactly n − m + 1 cycles of length m for 4 ≤ m ≤ n − 1. We describe the substructure of such D satisfying a given condition and we also show that, under this condition, the second problem has a negative answer.
Keywords:
multipartite tournaments, tournaments, cycles
@article{DMGT_2021_41_1_a4,
author = {Guo, Qiaoping and Meng, Wei},
title = {On the {n-Partite} {Tournaments} with {Exactly} n \ensuremath{-} m + 1 {Cycles} of {Length} m},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {75--82},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/}
}
TY - JOUR AU - Guo, Qiaoping AU - Meng, Wei TI - On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 75 EP - 82 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/ LA - en ID - DMGT_2021_41_1_a4 ER -
Guo, Qiaoping; Meng, Wei. On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/