Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a4, author = {Guo, Qiaoping and Meng, Wei}, title = {On the {n-Partite} {Tournaments} with {Exactly} n \ensuremath{-} m + 1 {Cycles} of {Length} m}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {75--82}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/} }
TY - JOUR AU - Guo, Qiaoping AU - Meng, Wei TI - On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 75 EP - 82 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/ LA - en ID - DMGT_2021_41_1_a4 ER -
Guo, Qiaoping; Meng, Wei. On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[2] M. Burzio and D.C. Demaria, Hamiltonian tournaments with the least number of 3- cycles, J. Graph Theory 14 (1990) 663–672. doi: 10.1002/jgt.3190140606
[3] R.J. Douglas, Tournaments that admit exactly one Hamiltonian circuit, Proc. Lond. Math. Soc. (3) 21 (1970) 716–730. doi: 10.1112/plms/s3-21.4.716
[4] W.D. Goddard and O.R. Oellermann, On the cycle structure of multipartite tournaments, in: Graph Theory, Combinatorics and Applications 1, (Wiley-Interscience, New York, 1991) 525–533.
[5] Y. Guo and L. Volkmann, Cycles in multipartite tournaments, J. Combin. Theory Ser. B 62 (1994) 363–366. doi: 10.1006./jctb.1994.1075
[6] G. Gutin and A. Rafiey, Multipartite tournaments with small number of cycles, Australas. J. Combin. 34 (2006) 17–21.
[7] G. Gutin, A. Rafiey and A. Yeo, On n-partite tournaments with unique n-cycle, Graphs Combin. 22 (2006) 241–249. doi: 10.1007/s00373-006-0641-8
[8] M. Las Vergnas, Sur le nombre de circuits dans un tornoi fortement connexe, Cahiers Centre Études Rech. Opér. 17 (1975) 261–265.
[9] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966) 297–301. doi: 10.4153/CMB-1966-038-7
[10] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002) 19–53. doi: 10.1016/S0012-365X(01)00419-8
[11] S. Winzen, Strong subtournaments of close to regular multipartite tournaments, Australas. J. Combin. 29 (2004) 49–57.