On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Library of Science

Gutin and Rafiey [Multipartite tournaments with small number of cycles, Australas J. Combin. 34 (2006) 17–21] raised the following two problems: (1) Let m ∈ 3, 4, . . ., n. Find a characterization of strong n-partite tournaments having exactly n − m + 1 cycles of length m; (2) Let 3 ≤ m ≤ n and n ≥ 4. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly n − m + 1 cycles of length m for two values of m? In this paper, we discuss the strong n-partite tournaments D containing exactly n − m + 1 cycles of length m for 4 ≤ m ≤ n − 1. We describe the substructure of such D satisfying a given condition and we also show that, under this condition, the second problem has a negative answer.
Keywords: multipartite tournaments, tournaments, cycles
@article{DMGT_2021_41_1_a4,
     author = {Guo, Qiaoping and Meng, Wei},
     title = {On the {n-Partite} {Tournaments} with {Exactly} n \ensuremath{-} m + 1 {Cycles} of {Length} m},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/}
}
TY  - JOUR
AU  - Guo, Qiaoping
AU  - Meng, Wei
TI  - On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 75
EP  - 82
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/
LA  - en
ID  - DMGT_2021_41_1_a4
ER  - 
%0 Journal Article
%A Guo, Qiaoping
%A Meng, Wei
%T On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 75-82
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/
%G en
%F DMGT_2021_41_1_a4
Guo, Qiaoping; Meng, Wei. On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a4/

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).

[2] M. Burzio and D.C. Demaria, Hamiltonian tournaments with the least number of 3- cycles, J. Graph Theory 14 (1990) 663–672. doi: 10.1002/jgt.3190140606

[3] R.J. Douglas, Tournaments that admit exactly one Hamiltonian circuit, Proc. Lond. Math. Soc. (3) 21 (1970) 716–730. doi: 10.1112/plms/s3-21.4.716

[4] W.D. Goddard and O.R. Oellermann, On the cycle structure of multipartite tournaments, in: Graph Theory, Combinatorics and Applications 1, (Wiley-Interscience, New York, 1991) 525–533.

[5] Y. Guo and L. Volkmann, Cycles in multipartite tournaments, J. Combin. Theory Ser. B 62 (1994) 363–366. doi: 10.1006./jctb.1994.1075

[6] G. Gutin and A. Rafiey, Multipartite tournaments with small number of cycles, Australas. J. Combin. 34 (2006) 17–21.

[7] G. Gutin, A. Rafiey and A. Yeo, On n-partite tournaments with unique n-cycle, Graphs Combin. 22 (2006) 241–249. doi: 10.1007/s00373-006-0641-8

[8] M. Las Vergnas, Sur le nombre de circuits dans un tornoi fortement connexe, Cahiers Centre Études Rech. Opér. 17 (1975) 261–265.

[9] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966) 297–301. doi: 10.4153/CMB-1966-038-7

[10] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002) 19–53. doi: 10.1016/S0012-365X(01)00419-8

[11] S. Winzen, Strong subtournaments of close to regular multipartite tournaments, Australas. J. Combin. 29 (2004) 49–57.