Minimal Graphs with Respect to Geometric Distance Realizability
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 65-73
Voir la notice de l'article provenant de la source Library of Science
A graph G is minimal non-unit-distance graph if there is no drawing of G in Euclidean plane having all edges of unit length, but, for each edge e of G, G − e has such a drawing. We prove that, for infinitely many n, the number of non-isomorphic n-vertex minimal non-unit-distance graphs is at least exponential in n.
Keywords:
unit-distance graph, odd-distance graph, Euclidean plane
@article{DMGT_2021_41_1_a3,
author = {Madaras, Tom\'a\v{s} and \v{S}iroczki, Pavol},
title = {Minimal {Graphs} with {Respect} to {Geometric} {Distance} {Realizability}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {65--73},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/}
}
TY - JOUR AU - Madaras, Tomáš AU - Široczki, Pavol TI - Minimal Graphs with Respect to Geometric Distance Realizability JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 65 EP - 73 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/ LA - en ID - DMGT_2021_41_1_a3 ER -
Madaras, Tomáš; Široczki, Pavol. Minimal Graphs with Respect to Geometric Distance Realizability. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 65-73. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/