Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a3, author = {Madaras, Tom\'a\v{s} and \v{S}iroczki, Pavol}, title = {Minimal {Graphs} with {Respect} to {Geometric} {Distance} {Realizability}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {65--73}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/} }
TY - JOUR AU - Madaras, Tomáš AU - Široczki, Pavol TI - Minimal Graphs with Respect to Geometric Distance Realizability JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 65 EP - 73 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/ LA - en ID - DMGT_2021_41_1_a3 ER -
Madaras, Tomáš; Široczki, Pavol. Minimal Graphs with Respect to Geometric Distance Realizability. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 65-73. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/
[1] N. Alon and A. Kupavskii, Two notions of unit distance graphs, J. Combin. Theory Ser. A 125 (2014) 1–17. doi: 10.1016/j.jcta.2014.02.006
[2] P. Erdős, F. Harary and W.T. Tutte, On the dimension of a graph, Mathematika 12 (1965) 118–122. doi: 10.1112/S0025579300005222
[3] R.L. Graham, B.L. Rotschild and E.G. Strauss, Are there n + 2 points in n with odd integral distances ?, Amer. Math. Monthly 81 (1974) 21–25. doi: 10.1080/00029890.1974.11993491
[4] B. Horvat, J. Kratochvíl and T. Pisanski, On the computational complexity of degenerate unit distance representations of graphs, Lecture Notes in Comput. Sci. 6460 (2011) 274–285. doi: 10.1007/978-3-642-19222-7_28
[5] V.P. Korzhik and B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity testing, J. Graph Theory 72 (2013) 30–71. doi: 10.1002/jgt.21630
[6] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271–283. doi: 10.4064/fm-15-1-271-283
[7] L. Piepmeyer, The maximum number of odd integral distances between points in the plane, Discrete Comput. Geom. 16 (1996) 113–115. doi: 10.1007/BF02711135
[8] M. Rosenfeld and N.L. Tiên, Forbidden subgraphs of the odd-distance graph, J. Graph Theory 75 (2014) 323–330. doi: 10.1002/jgt.21738
[9] A. Soifer, The Mathematical Coloring Book (Springer-Verlag, New York, 2009). doi: 10.1007/978-0-387-74642-5
[10] M. Tikhomirov, On computational complexity of length embeddability of graphs, Discrete Math. 339 (2016) 2605–2612. doi: 10.1016/j.disc.2016.05.011
[11] D.B. West, Introduction to Graph Theory (Prentice Hall, 1996).
[12] H. Weyl, Über die Gibbs’sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. 30 (1910) 377–407. doi: 10.1007/BF03014883