Minimal Graphs with Respect to Geometric Distance Realizability
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 65-73

Voir la notice de l'article provenant de la source Library of Science

A graph G is minimal non-unit-distance graph if there is no drawing of G in Euclidean plane having all edges of unit length, but, for each edge e of G, G − e has such a drawing. We prove that, for infinitely many n, the number of non-isomorphic n-vertex minimal non-unit-distance graphs is at least exponential in n.
Keywords: unit-distance graph, odd-distance graph, Euclidean plane
@article{DMGT_2021_41_1_a3,
     author = {Madaras, Tom\'a\v{s} and \v{S}iroczki, Pavol},
     title = {Minimal {Graphs} with {Respect} to {Geometric} {Distance} {Realizability}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/}
}
TY  - JOUR
AU  - Madaras, Tomáš
AU  - Široczki, Pavol
TI  - Minimal Graphs with Respect to Geometric Distance Realizability
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 65
EP  - 73
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/
LA  - en
ID  - DMGT_2021_41_1_a3
ER  - 
%0 Journal Article
%A Madaras, Tomáš
%A Široczki, Pavol
%T Minimal Graphs with Respect to Geometric Distance Realizability
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 65-73
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/
%G en
%F DMGT_2021_41_1_a3
Madaras, Tomáš; Široczki, Pavol. Minimal Graphs with Respect to Geometric Distance Realizability. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 65-73. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a3/