Graph Exponentiation and Neighborhood Reconstruction
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 335-339
Voir la notice de l'article provenant de la source Library of Science
Any graph G admits a neighborhood multiset 𝒩(G) = {N_G(x) | x ∈ V (G)} whose elements are precisely the open neighborhoods of G. We say G is neighborhood reconstructible if it can be reconstructed from 𝒩(G), that is, if G ≅ H whenever 𝒩(G) = 𝒩(H) for some other graph H. This note characterizes neighborhood reconstructible graphs as those graphs G that obey the exponential cancellation G^K_2 ≅ H^K_2 ⇒ G ≅ H.
Keywords:
neighborhood reconstructible graphs, graph exponentiation
@article{DMGT_2021_41_1_a20,
author = {Hammack, Richard H.},
title = {Graph {Exponentiation} and {Neighborhood} {Reconstruction}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {335--339},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a20/}
}
Hammack, Richard H. Graph Exponentiation and Neighborhood Reconstruction. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 335-339. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a20/