Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a19, author = {Plachta, Leonid}, title = {Coverings of {Cubic} {Graphs} and {3-Edge} {Colorability}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {311--334}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a19/} }
Plachta, Leonid. Coverings of Cubic Graphs and 3-Edge Colorability. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 311-334. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a19/
[1] R. Diestel, Graph Theory (Springer, Berlin, Heidelberg, 2010). doi: 10.1007/978-3-642-14279-6
[2] M.A. Fiol, G. Mazzuoccolo and E. Steffen, On measures of edge-uncolorability of cubic graphs: A brief survey and some new results, 23 Feb 2017. arXiv:1702.07156v1[math.CO]
[3] M. Ghebleh, The circular chromatic index of Goldberg snarks, Discrete Math. 307 (2007) 3220–3225. doi: 10.1016/j.disc.2007.03.047
[4] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977) 273–283. doi: 10.1016/0012-365X(77)90131-5
[5] J.L. Gross and T.W. Tucker, Topological Graph Theory (Dover Publications Inc., New York, 2012).
[6] J. Hägglund, On snarks that are far from being 3-edge colorable, Electron. J. Combin. 23 (2016) #P2.6.
[7] M. Kochol, Snarks without small cycles, J. Combin. Theory Ser. B 67 (1996) 34–47. doi: 10.1006/jctb.1996.0032
[8] R. Lukoťka, E. Máčajová, J. Mazák and M. Škoviera, Small snarks with large oddness, Electron. J. Combin. 22 (2015) #P1.51.
[9] E. Máčajová and M. Škoviera, Irreducible snarks of given order and cyclic connectivity, Discrete Math. 306 (2006) 779–791. doi: 10.1016/j.disc.2006.02.003
[10] W. McCuaig, Edge reductions in cyclically k-connected cubic graphs, J. Combin. Theory Ser. B 56 (1992) 16–44. doi: 10.1016/0095-8956(92)90004-H
[11] B. Mohar, E. Steffen and A. Vodopivec, Relating embeddings and coloring properties of snarks, Ars Math. Contemp. 1 (2008) 169–184. doi: 10.26493/1855-3974.49.b88
[12] R. Nedela and M. Škoviera, Decompositions and reductions of snarks, J. Graph Theory 22 (1996) 253–279. doi: 10.1002/(SICI)1097-0118(199607)22:3(253::AID-JGT6)3.0.CO;2-L
[13] E. Steffen, Measurements of edge-uncolorability, Discrete Math. 280 (2004) 191–214. doi: 10.1016/j.disc.2003.05.005
[14] V.G. Vizing, Critical graphs with given chromatic class, Diskret. Analiz. 5 (1965) 9–17 (in Russian).