Coverings of Cubic Graphs and 3-Edge Colorability
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 311-334

Voir la notice de l'article provenant de la source Library of Science

Let h:G̃→G be a finite covering of 2-connected cubic (multi)graphs where G is 3-edge uncolorable. In this paper, we describe conditions under which G̃ is 3-edge uncolorable. As particular cases, we have constructed regular and irregular 5-fold coverings f:G̃→G of uncolorable cyclically 4-edge connected cubic graphs and an irregular 5-fold covering g:H̃→H of uncolorable cyclically 6-edge connected cubic graphs. In [13], Steffen introduced the resistance of a subcubic graph, a characteristic that measures how far is this graph from being 3-edge colorable. In this paper, we also study the relation between the resistance of the base cubic graph and the covering cubic graph.
Keywords: uncolorable cubic graph, covering of graphs, voltage permutation graph, resistance, nowhere-zero 4-flow
@article{DMGT_2021_41_1_a19,
     author = {Plachta, Leonid},
     title = {Coverings of {Cubic} {Graphs} and {3-Edge} {Colorability}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {311--334},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a19/}
}
TY  - JOUR
AU  - Plachta, Leonid
TI  - Coverings of Cubic Graphs and 3-Edge Colorability
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 311
EP  - 334
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a19/
LA  - en
ID  - DMGT_2021_41_1_a19
ER  - 
%0 Journal Article
%A Plachta, Leonid
%T Coverings of Cubic Graphs and 3-Edge Colorability
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 311-334
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a19/
%G en
%F DMGT_2021_41_1_a19
Plachta, Leonid. Coverings of Cubic Graphs and 3-Edge Colorability. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 311-334. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a19/