Dualizing Distance-Hereditary Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 285-296

Voir la notice de l'article provenant de la source Library of Science

Distance-hereditary graphs can be characterized by every cycle of length at least 5 having crossing chords. This makes distance-hereditary graphs susceptible to dualizing, using the common extension of geometric face/vertex planar graph duality to cycle/cutset duality as in abstract matroidal duality. The resulting “DH* graphs” are characterized and then analyzed in terms of connectivity. These results are used in a special case of plane-embedded graphs to justify viewing DH* graphs as the duals of distance-hereditary graphs.
Keywords: distance-hereditary graph, dual graph, graph duality
@article{DMGT_2021_41_1_a17,
     author = {McKee, Terry A.},
     title = {Dualizing {Distance-Hereditary} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a17/}
}
TY  - JOUR
AU  - McKee, Terry A.
TI  - Dualizing Distance-Hereditary Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 285
EP  - 296
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a17/
LA  - en
ID  - DMGT_2021_41_1_a17
ER  - 
%0 Journal Article
%A McKee, Terry A.
%T Dualizing Distance-Hereditary Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 285-296
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a17/
%G en
%F DMGT_2021_41_1_a17
McKee, Terry A. Dualizing Distance-Hereditary Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 285-296. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a17/