A Constructive Characterization of Vertex Cover Roman Trees
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 267-283.

Voir la notice de l'article provenant de la source Library of Science

A Roman dominating function on a graph G = (V(G), E(G)) is a function f : V(G) → 0, 1, 2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number γoiR(G) is the minimum weight w(f) = Σv∈V(G)f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by α(G). A graph G is a vertex cover Roman graph if γoiR(G) = 2α(G). A constructive characterization of the vertex cover Roman trees is given in this article.
Keywords: Roman domination, outer-independent Roman domination, vertex cover, vertex independence, trees
@article{DMGT_2021_41_1_a16,
     author = {Mart{\'\i}nez, Abel Cabrera and Kuziak, Dorota and Yero, Ismael G.},
     title = {A {Constructive} {Characterization} of {Vertex} {Cover} {Roman} {Trees}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {267--283},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a16/}
}
TY  - JOUR
AU  - Martínez, Abel Cabrera
AU  - Kuziak, Dorota
AU  - Yero, Ismael G.
TI  - A Constructive Characterization of Vertex Cover Roman Trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 267
EP  - 283
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a16/
LA  - en
ID  - DMGT_2021_41_1_a16
ER  - 
%0 Journal Article
%A Martínez, Abel Cabrera
%A Kuziak, Dorota
%A Yero, Ismael G.
%T A Constructive Characterization of Vertex Cover Roman Trees
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 267-283
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a16/
%G en
%F DMGT_2021_41_1_a16
Martínez, Abel Cabrera; Kuziak, Dorota; Yero, Ismael G. A Constructive Characterization of Vertex Cover Roman Trees. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 267-283. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a16/

[1] H. Abdollahzadeh Ahangar, M. Chellali and V. Samodivkin, Outer independent Roman dominating functions in graphs, Int. J. Comput. Math. 94 (2017) 2547–2557. doi: 10.1080/00207160.2017.1301437

[2] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. doi: 10.1016/j.disc.2003.06.004

[3] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959) 133–138.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[6] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325–334. doi: 10.7151/dmgt.1178

[7] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564. doi: 10.1016/j.dam.2016.09.035

[8] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998) 159–169. doi: 10.1016/S0012-365X(98)00103-4

[9] I. Stewart, Defend the Roman Empire !, Sci. Amer. 281 (1999) 136–138. doi: 10.1038/scientificamerican1299-136