Decomposition of the Tensor Product of Complete Graphs into Cycles of Lengths 3 and 6
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 249-266

Voir la notice de l'article provenant de la source Library of Science

By a {C_3^α, C_3^β}-decomposition of a graph G, we mean a partition of the edge set of G into α cycles of length 3 and β cycles of length 6. In this paper, necessary and sufficient conditions for the existence of a {C_3^α, C_3^β}-decomposition of (K_m × K_n)(λ), where × denotes the tensor product of graphs and λ is the multiplicity of the edges, is obtained. In fact, we prove that for λ ≥ 1, m, n ≥ 3 and (m, n) ≠ (3, 3), a {C_3^α, C_3^β}-decomposition of (Km × Kn)(λ) exists if and only if λ(m − 1)(n − 1) ≡ 0 (mod 2) and 3α+6β=λ m(m-1)n(n-1)/2.
Keywords: cycle decomposition, tensor product
@article{DMGT_2021_41_1_a15,
     author = {Paulraja, P. and Srimathi, R.},
     title = {Decomposition of the {Tensor} {Product} of {Complete} {Graphs} into {Cycles} of {Lengths} 3 and 6},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {249--266},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a15/}
}
TY  - JOUR
AU  - Paulraja, P.
AU  - Srimathi, R.
TI  - Decomposition of the Tensor Product of Complete Graphs into Cycles of Lengths 3 and 6
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 249
EP  - 266
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a15/
LA  - en
ID  - DMGT_2021_41_1_a15
ER  - 
%0 Journal Article
%A Paulraja, P.
%A Srimathi, R.
%T Decomposition of the Tensor Product of Complete Graphs into Cycles of Lengths 3 and 6
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 249-266
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a15/
%G en
%F DMGT_2021_41_1_a15
Paulraja, P.; Srimathi, R. Decomposition of the Tensor Product of Complete Graphs into Cycles of Lengths 3 and 6. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 249-266. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a15/