On Grundy Total Domination Number in Product Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 225-247

Voir la notice de l'article provenant de la source Library of Science

A longest sequence (v_1, . . ., v_k) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υ_i)\⋃_j=1^i-1N(υ_j)≠∅. The length k of the sequence is called the Grundy total domination number of G and denoted γ_gr^t(G). In this paper, the Grundy total domination number is studied on four standard graph products. For the direct product we show that γ_gr^t(G×H)≥γ_gr^t(G)γ_gr^t(H), conjecture that the equality always holds, and prove the conjecture in several special cases. For the lexicographic product we express γ_gr^t(G∘H) in terms of related invariant of the factors and find some explicit formulas for it. For the strong product, lower bounds on γ_gr^t(G⊠H) are proved as well as upper bounds for products of paths and cycles. For the Cartesian product we prove lower and upper bounds on the Grundy total domination number when factors are paths or cycles.
Keywords: total domination, Grundy total domination number, graph product
@article{DMGT_2021_41_1_a14,
     author = {Bre\v{s}ar, Bo\v{s}tjan and Bujt\'as, Csilla and Gologranc, Tanja and Klav\v{z}ar, Sandi and Ko\v{s}mrlj, Ga\v{s}per and Marc, Tilen and Patk\'os, Bal\'azs and Tuza, Zsolt and Vizer, M\'at\'e},
     title = {On {Grundy} {Total} {Domination} {Number} in {Product} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {225--247},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a14/}
}
TY  - JOUR
AU  - Brešar, Boštjan
AU  - Bujtás, Csilla
AU  - Gologranc, Tanja
AU  - Klavžar, Sandi
AU  - Košmrlj, Gašper
AU  - Marc, Tilen
AU  - Patkós, Balázs
AU  - Tuza, Zsolt
AU  - Vizer, Máté
TI  - On Grundy Total Domination Number in Product Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 225
EP  - 247
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a14/
LA  - en
ID  - DMGT_2021_41_1_a14
ER  - 
%0 Journal Article
%A Brešar, Boštjan
%A Bujtás, Csilla
%A Gologranc, Tanja
%A Klavžar, Sandi
%A Košmrlj, Gašper
%A Marc, Tilen
%A Patkós, Balázs
%A Tuza, Zsolt
%A Vizer, Máté
%T On Grundy Total Domination Number in Product Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 225-247
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a14/
%G en
%F DMGT_2021_41_1_a14
Brešar, Boštjan; Bujtás, Csilla; Gologranc, Tanja; Klavžar, Sandi; Košmrlj, Gašper; Marc, Tilen; Patkós, Balázs; Tuza, Zsolt; Vizer, Máté. On Grundy Total Domination Number in Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 225-247. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a14/