Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a12, author = {Hu, Linna and Sun, Lei and Wu, Jian-Liang}, title = {List {Edge} {Coloring} of {Planar} {Graphs} without {6-Cycles} with {Two} {Chords}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {199--211}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/} }
TY - JOUR AU - Hu, Linna AU - Sun, Lei AU - Wu, Jian-Liang TI - List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 199 EP - 211 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/ LA - en ID - DMGT_2021_41_1_a12 ER -
%0 Journal Article %A Hu, Linna %A Sun, Lei %A Wu, Jian-Liang %T List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords %J Discussiones Mathematicae. Graph Theory %D 2021 %P 199-211 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/ %G en %F DMGT_2021_41_1_a12
Hu, Linna; Sun, Lei; Wu, Jian-Liang. List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 199-211. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/
[1] M. Bonamy, Planar graphs with Δ ≥ 8 are (Δ+1)-edge-choosable, SIAM J. Discrete Math. 29 (2015) 1735–1763. doi: 10.1137/130927449
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
[3] O.V. Borodin, An extension of Kotzig's theorem and the list edge coloring of planar graphs, Mat. Zametki 48 (1990) 22–48.
[4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184–204. doi: 10.1006/jctb.1997.1780
[5] J.S. Cai, J.F. Hou, X. Zhang and G.Z. Liu, Edge-choosability of planar graphs without non-induced 5-cycles, Inform. Process. Lett. 109 (2009) 343–346. doi: 10.1016/j.ipl.2008.12.001
[6] J.S. Cai, List edge coloring of planar graphs without non-induced 6-cycles, Graphs Combin. 31 (2015) 827–832. doi: 10.1007/s00373-014-1420-6
[7] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153–158. doi: 10.1006/jctb.1995.1011
[8] R. Hägkvist and J. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997) 295–313. doi: 10.1017/S0963548397002927
[9] R. Hägkvist and A. Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs, J. Graph Theory 16 (1992) 503–516. doi: 10.1002/jgt.3190160510
[10] A.J. Harris, Problems and conjectures in extrema graph theory, Ph.D. Dissertation (Cambridge University, UK, 1984).
[11] J.F. Hou, G.Z. Liu and J.S. Cai, List edge and list total colorings of planar graphs without 4- cycles, Theoret. Comput. Sci. 369 (2006) 250–255. doi: 10.1016/j.tcs.2006.08.043
[12] J.F. Hou, G.Z. Liu and J.S. Cai, Edge-choosability of planar graphs without adjacent triangles or without 7-cycles, Discrete Math. 309 (2009) 77–84. doi: 10.1016/j.disc.2007.12.046
[13] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995).
[14] M. Juvan, B. Mohar and R. Šrekovski, Graphs of degree 4 are 5-choosable, J. Graph Theory 32 (1999) 250–262. doi: 10.1002/(SICI)1097-0118(199911)32:3(250::AID-JGT5)3.0.CO;2-R
[15] A.V. Kostochka, List edge chromatic number of graphs with large girth, Discrete Math. 101 (1992) 189-201. doi: 10.1016/0012-365X(92)90602-C
[16] B. Liu, J.F. Hou and G.Z. Liu, List edge and list total colorings of planar graphs without short cycles, Inform. Process. Lett. 108 (2008) 347–351. doi: 10.1016/j.ipl.2008.07.003
[17] Y. Shen, G. Zheng, W. He and Y. Zhao, Structural properties and edge choosability of planar graphs without 4- cycles, Discrete Math. 308 (2008) 5789–5794. doi: 10.1016/j.disc.2007.09.048
[18] W.F. Wang and K.W. Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput. 10 (2001) 267–276.
[19] W.F. Wang and K.W. Lih, Choosability, edge choosability and total choosability of outerplanar graphs, European J. Combin. 22 (2001) 71–78. doi: 10.1006/eujc.2000.0430
[20] W.F. Wang and K.W. Lih, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett. 15 (2002) 561–565. doi: 10.1016/S0893-9659(02)80007-6
[21] J.L. Wu and P. Wang, List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math. 308 (2008) 6210–6215. doi: 10.1016/j.disc.2007.11.044
[22] L. Zhang and B. Wu, Edge choosability of planar graphs without small cycles, Discrete Math. 283 (2004) 289–293. doi: 10.1016/j.disc.2004.01.001