List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 199-211

Voir la notice de l'article provenant de la source Library of Science

A graph G is edge-L-colorable if for a given edge assignment L = L(e) : e ∈ E(G), there exists a proper edge-coloring φ of G such that φ(e) ∈ L(e) for all e ∈ E(G). If G is edge-L-colorable for every edge assignment L such that |L(e)| ≥ k for all e ∈ E(G), then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph without 6-cycles with two chords, then G is edge-k-choosable, where k = max7, Δ(G) + 1, and is edge-t-choosable, where t = max9, Δ(G).
Keywords: planar graph, edge choosable, list edge chromatic number, chord
@article{DMGT_2021_41_1_a12,
     author = {Hu, Linna and Sun, Lei and Wu, Jian-Liang},
     title = {List {Edge} {Coloring} of {Planar} {Graphs} without {6-Cycles} with {Two} {Chords}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {199--211},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/}
}
TY  - JOUR
AU  - Hu, Linna
AU  - Sun, Lei
AU  - Wu, Jian-Liang
TI  - List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 199
EP  - 211
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/
LA  - en
ID  - DMGT_2021_41_1_a12
ER  - 
%0 Journal Article
%A Hu, Linna
%A Sun, Lei
%A Wu, Jian-Liang
%T List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 199-211
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/
%G en
%F DMGT_2021_41_1_a12
Hu, Linna; Sun, Lei; Wu, Jian-Liang. List Edge Coloring of Planar Graphs without 6-Cycles with Two Chords. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 199-211. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a12/