Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a1, author = {Dehgardi, Nasrin and Sheikholeslami, Seyed Mahmoud and Valinavaz, Mina and Aram, Hamideh and Volkmann, Lutz}, title = {Domination {Number,} {Independent} {Domination} {Number} and {2-Independence} {Number} in {Trees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {39--49}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a1/} }
TY - JOUR AU - Dehgardi, Nasrin AU - Sheikholeslami, Seyed Mahmoud AU - Valinavaz, Mina AU - Aram, Hamideh AU - Volkmann, Lutz TI - Domination Number, Independent Domination Number and 2-Independence Number in Trees JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 39 EP - 49 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a1/ LA - en ID - DMGT_2021_41_1_a1 ER -
%0 Journal Article %A Dehgardi, Nasrin %A Sheikholeslami, Seyed Mahmoud %A Valinavaz, Mina %A Aram, Hamideh %A Volkmann, Lutz %T Domination Number, Independent Domination Number and 2-Independence Number in Trees %J Discussiones Mathematicae. Graph Theory %D 2021 %P 39-49 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a1/ %G en %F DMGT_2021_41_1_a1
Dehgardi, Nasrin; Sheikholeslami, Seyed Mahmoud; Valinavaz, Mina; Aram, Hamideh; Volkmann, Lutz. Domination Number, Independent Domination Number and 2-Independence Number in Trees. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a1/
[1] J. Amjadi, N. Dehgardi, S.M. Sheikholeslami and M. Valinavaz, Independent Roman domination and 2- independence in trees, Discrete Math. Algorithms Appl. 10 (2018) 1850052. doi: 10.1142/S1793830918500520
[2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A survey, Graphs Combin. 28 (2012) 1–55. doi: 10.1007/s00373-011-1040-3
[3] M. Chellali and N. Meddah, Trees with equal 2-domination and 2-independence numbers, Discuss. Math. Graph Theory 32 (2012) 263–270. doi: 10.7151/dmgt.1603
[4] N. Dehgardi, Mixed Roman domination and 2-independence in trees, Commun. Comb. Optim. 3 (2018) 79–91. doi: 10.22049/CCO.2018.25964.1062
[5] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory Ser. B 39 (1985) 101–102. doi: 10.1016/0095-8956(85)90040-1
[6] O. Favaron, Graduate course in the University of Blida (2005), unpublished.
[7] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283–300.
[8] Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 301–311.
[9] A. Hansberg, D. Meierling and L. Volkmann, Independence and k-domination in graphs, Int. J. Comput. Math. 88 (2011) 905–915. doi: 10.1080/00207160.2010.482664
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[12] M.S. Jacobson, K. Peters and D.F. Rall, On n-irredundance and n-domination, Ars Combin. 29 (1990) 151–160.
[13] N. Meddah and M. Chellali, Roman domination and 2-independence in trees, Discrete Math. Algorithms Appl. 9 (2017) 1750023. doi: 10.1142/S1793830917500239