A Note on the Fair Domination Number in Outerplanar Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1085-1093.

Voir la notice de l'article provenant de la source Library of Science

For k ≥ 1, a k-fair dominating set (or just kFD-set), in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V − S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer k ≥ 1. The fair domination number, denoted by fd(G), of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, we present a new sharp upper bound for the fair domination number of an outerplanar graph.
Keywords: fair domination, outerplanar graph, unicyclic graph
@article{DMGT_2020_40_4_a9,
     author = {Hajian, Majid and Rad, Nader Jafari},
     title = {A {Note} on the {Fair} {Domination} {Number} in {Outerplanar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1085--1093},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Rad, Nader Jafari
TI  - A Note on the Fair Domination Number in Outerplanar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1085
EP  - 1093
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/
LA  - en
ID  - DMGT_2020_40_4_a9
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Rad, Nader Jafari
%T A Note on the Fair Domination Number in Outerplanar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1085-1093
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/
%G en
%F DMGT_2020_40_4_a9
Hajian, Majid; Rad, Nader Jafari. A Note on the Fair Domination Number in Outerplanar Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1085-1093. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/

[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914. doi:10.1016/j.disc.2012.05.006

[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175–184.

[3] B. Chaluvaraju and K. Vidya, Perfect dominating set graph of a graph, Adv. Appl. Discrete Math. 2 (2008) 49–57.

[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Comb. Inf. Syst. Sci. 18 (1993) 136–148.

[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99–114.

[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177–196.

[7] I. Fabrici, Light graphs in families of outerplanar graphs, Discrete Math. 307 (2007) 866–872. doi:10.1016/j.disc.2005.11.058

[8] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141–150.

[9] M. Hajian and N. Jafari Rad, Trees and unicyclic graphs with large fair domination number, Util. Math., to appear.

[10] M. Hajian and N. Jafari Rad, Fair domination number in cactus graphs, Discuss. Math. Graph Theory 39 (2019) 489–503. doi:10.7151/dmgt.2088

[11] A. Hansberg, Reviewing some results on fair domination in graphs, Electron. Notes Discrete Math. 43 (2013) 367–373. doi:10.1016/j.endm.2013.07.054

[12] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) #N8.

[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[14] J. Leydold and P.F. Stadler, Minimal cycle bases of outerplanar graphs, Electron. J. Combin. 5 (1998) #R16.