A Note on the Fair Domination Number in Outerplanar Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1085-1093

Voir la notice de l'article provenant de la source Library of Science

For k ≥ 1, a k-fair dominating set (or just kFD-set), in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V − S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer k ≥ 1. The fair domination number, denoted by fd(G), of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, we present a new sharp upper bound for the fair domination number of an outerplanar graph.
Keywords: fair domination, outerplanar graph, unicyclic graph
@article{DMGT_2020_40_4_a9,
     author = {Hajian, Majid and Rad, Nader Jafari},
     title = {A {Note} on the {Fair} {Domination} {Number} in {Outerplanar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1085--1093},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Rad, Nader Jafari
TI  - A Note on the Fair Domination Number in Outerplanar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1085
EP  - 1093
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/
LA  - en
ID  - DMGT_2020_40_4_a9
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Rad, Nader Jafari
%T A Note on the Fair Domination Number in Outerplanar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1085-1093
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/
%G en
%F DMGT_2020_40_4_a9
Hajian, Majid; Rad, Nader Jafari. A Note on the Fair Domination Number in Outerplanar Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1085-1093. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/