Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a9, author = {Hajian, Majid and Rad, Nader Jafari}, title = {A {Note} on the {Fair} {Domination} {Number} in {Outerplanar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1085--1093}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/} }
TY - JOUR AU - Hajian, Majid AU - Rad, Nader Jafari TI - A Note on the Fair Domination Number in Outerplanar Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 1085 EP - 1093 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/ LA - en ID - DMGT_2020_40_4_a9 ER -
Hajian, Majid; Rad, Nader Jafari. A Note on the Fair Domination Number in Outerplanar Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1085-1093. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a9/
[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914. doi:10.1016/j.disc.2012.05.006
[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175–184.
[3] B. Chaluvaraju and K. Vidya, Perfect dominating set graph of a graph, Adv. Appl. Discrete Math. 2 (2008) 49–57.
[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Comb. Inf. Syst. Sci. 18 (1993) 136–148.
[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99–114.
[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177–196.
[7] I. Fabrici, Light graphs in families of outerplanar graphs, Discrete Math. 307 (2007) 866–872. doi:10.1016/j.disc.2005.11.058
[8] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141–150.
[9] M. Hajian and N. Jafari Rad, Trees and unicyclic graphs with large fair domination number, Util. Math., to appear.
[10] M. Hajian and N. Jafari Rad, Fair domination number in cactus graphs, Discuss. Math. Graph Theory 39 (2019) 489–503. doi:10.7151/dmgt.2088
[11] A. Hansberg, Reviewing some results on fair domination in graphs, Electron. Notes Discrete Math. 43 (2013) 367–373. doi:10.1016/j.endm.2013.07.054
[12] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) #N8.
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[14] J. Leydold and P.F. Stadler, Minimal cycle bases of outerplanar graphs, Electron. J. Combin. 5 (1998) #R16.