Congruences and Hoehnke Radicals on Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1067-1084.

Voir la notice de l'article provenant de la source Library of Science

We motivate, introduce, and study radicals on classes of graphs. This concept, and the theory which is developed, imitates the original notion of a Hoehnke radical in universal algebra using congruences. It is shown how this approach ties in with the existing theory of connectednesses and disconnectednesses (= Kurosh-Amitsur radical theory).
Keywords: congruences and quotients of graphs, Hoehnke radicals of graphs, connectednesses and disconnectednesses of graphs, Kurosh-Amitsur radicals of graphs, subdirect representations of graphs
@article{DMGT_2020_40_4_a8,
     author = {Broere, Izak and Heidema, Johannes and Veldsman, Stefan},
     title = {Congruences and {Hoehnke} {Radicals} on {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1067--1084},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Heidema, Johannes
AU  - Veldsman, Stefan
TI  - Congruences and Hoehnke Radicals on Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1067
EP  - 1084
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/
LA  - en
ID  - DMGT_2020_40_4_a8
ER  - 
%0 Journal Article
%A Broere, Izak
%A Heidema, Johannes
%A Veldsman, Stefan
%T Congruences and Hoehnke Radicals on Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1067-1084
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/
%G en
%F DMGT_2020_40_4_a8
Broere, Izak; Heidema, Johannes; Veldsman, Stefan. Congruences and Hoehnke Radicals on Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1067-1084. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/

[1] G. Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944) 764–768. doi:10.1090/S0002-9904-1944-08235-9

[2] I. Broere and J. Heidema, Products and tensor products of graphs and homomorphisms . arXiv:1612.00601 [math.CO]

[3] I. Broere, J. Heidema and M.D.V. Matsoha, The quest for a characterization of hom-properties of finite character, Discuss. Math. Graph Theory 36 (2016) 479–500. doi:10.7151/dmgt.1873

[4] I. Broere, J. Heidema and L.M. Pretorius, Graph congruences and what they connote, Quaest. Math., to appear. doi:10.2989/16073606.2017.1419388

[5] A. Buys and J. Heidema, Model-theoretical aspects of radicals and subdirect decomposability, in: M.J. Schoeman Ed, Proceedings of the Second Algebra Symposium held at the University of Pretoria in August 1980, Department of Mathematics, University of Pretoria, Pretoria 484 (1982) 21–25.

[6] A. Buys and J. Heidema, Radicals and subdirect products in models, Comm. Algebra 10 (1982) 1315–1330. doi:10.1080/00927878208822778

[7] B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, Second Edition (Cambridge University Press, New York, 2008).

[8] R. Diestel, Graph Theory (Springer, Heidelberg, 2010). doi:10.1007/978-3-642-14279-6

[9] E. Fried and R. Wiegandt, Connectednesses and disconnectednesses of graphs, Algebra Universalis 5 (1975) 411–428. doi:10.1007/BF02485276

[10] B.J. Gardner and R. Wiegandt, Radical Theory of Rings (CRC Press, 2003).

[11] M. Gray, A Radical Approach to Algebra (Addison-Wesley Publishing Co., Mass.-London-Don Mills, Ontario, 1970).

[12] H.-J. Hoehnke, Einige neue Resultateüber abstrakte Halbgruppen, Colloq. Math. 14 (1966) 329–348. doi:10.4064/cm-14-1-329-348

[13] H.-J. Hoehnke, Radikale in allgemeinen Algebren, Math. Nachr. 32 (1966) 347–383. doi:10.1002/mana.19660320607

[14] G. Köthe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist, Math. Z. 32 (1930) 161–186. doi:10.1007/BF01194626

[15] L. Márki, R. Mlitz and R.A. Wiegandt, A general Kurosh-Amitsur radical theory, Comm. Algebra 16 (1988) 249–305. doi:10.1080/00927878808823572

[16] A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra (North-Holland, Amsterdam, 1963).

[17] S. Veldsman, A General Radical Theory in Categories, Ph.D. Thesis (University of Port Elizabeth, 1980).