Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a8, author = {Broere, Izak and Heidema, Johannes and Veldsman, Stefan}, title = {Congruences and {Hoehnke} {Radicals} on {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1067--1084}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/} }
TY - JOUR AU - Broere, Izak AU - Heidema, Johannes AU - Veldsman, Stefan TI - Congruences and Hoehnke Radicals on Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 1067 EP - 1084 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/ LA - en ID - DMGT_2020_40_4_a8 ER -
Broere, Izak; Heidema, Johannes; Veldsman, Stefan. Congruences and Hoehnke Radicals on Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1067-1084. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a8/
[1] G. Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944) 764–768. doi:10.1090/S0002-9904-1944-08235-9
[2] I. Broere and J. Heidema, Products and tensor products of graphs and homomorphisms . arXiv:1612.00601 [math.CO]
[3] I. Broere, J. Heidema and M.D.V. Matsoha, The quest for a characterization of hom-properties of finite character, Discuss. Math. Graph Theory 36 (2016) 479–500. doi:10.7151/dmgt.1873
[4] I. Broere, J. Heidema and L.M. Pretorius, Graph congruences and what they connote, Quaest. Math., to appear. doi:10.2989/16073606.2017.1419388
[5] A. Buys and J. Heidema, Model-theoretical aspects of radicals and subdirect decomposability, in: M.J. Schoeman Ed, Proceedings of the Second Algebra Symposium held at the University of Pretoria in August 1980, Department of Mathematics, University of Pretoria, Pretoria 484 (1982) 21–25.
[6] A. Buys and J. Heidema, Radicals and subdirect products in models, Comm. Algebra 10 (1982) 1315–1330. doi:10.1080/00927878208822778
[7] B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, Second Edition (Cambridge University Press, New York, 2008).
[8] R. Diestel, Graph Theory (Springer, Heidelberg, 2010). doi:10.1007/978-3-642-14279-6
[9] E. Fried and R. Wiegandt, Connectednesses and disconnectednesses of graphs, Algebra Universalis 5 (1975) 411–428. doi:10.1007/BF02485276
[10] B.J. Gardner and R. Wiegandt, Radical Theory of Rings (CRC Press, 2003).
[11] M. Gray, A Radical Approach to Algebra (Addison-Wesley Publishing Co., Mass.-London-Don Mills, Ontario, 1970).
[12] H.-J. Hoehnke, Einige neue Resultateüber abstrakte Halbgruppen, Colloq. Math. 14 (1966) 329–348. doi:10.4064/cm-14-1-329-348
[13] H.-J. Hoehnke, Radikale in allgemeinen Algebren, Math. Nachr. 32 (1966) 347–383. doi:10.1002/mana.19660320607
[14] G. Köthe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist, Math. Z. 32 (1930) 161–186. doi:10.1007/BF01194626
[15] L. Márki, R. Mlitz and R.A. Wiegandt, A general Kurosh-Amitsur radical theory, Comm. Algebra 16 (1988) 249–305. doi:10.1080/00927878808823572
[16] A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra (North-Holland, Amsterdam, 1963).
[17] S. Veldsman, A General Radical Theory in Categories, Ph.D. Thesis (University of Port Elizabeth, 1980).