Strong Tutte Type Conditions and Factors of Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1057-1065

Voir la notice de l'article provenant de la source Library of Science

Let odd(G) denote the number of odd components of a graph G and k ≥ 2 be an integer. We give sufficient conditions using odd(G − S) for a graph G to have an even factor. Moreover, we show that if a graph G satisfies odd(G − S) ≤ max1, (1/k)|S| for all S ⊂ V (G), then G has a (k − 1)-regular factor for k ≥ 3 or an H-factor for k = 2, where we say that G has an H-factor if for every labeling h : V (G) → red, blue with #v ∈ V (G) : f(v) = red even, G has a spanning subgraph F such that degF (x) = 1 if h(x) = red and degF (x) ∈ 0, 2 otherwise.
Keywords: factor of graph, even factor, regular factor, Tutte type condition
@article{DMGT_2020_40_4_a7,
     author = {Yan, Zheng and Kano, Mikio},
     title = {Strong {Tutte} {Type} {Conditions} and {Factors} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1057--1065},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a7/}
}
TY  - JOUR
AU  - Yan, Zheng
AU  - Kano, Mikio
TI  - Strong Tutte Type Conditions and Factors of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1057
EP  - 1065
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a7/
LA  - en
ID  - DMGT_2020_40_4_a7
ER  - 
%0 Journal Article
%A Yan, Zheng
%A Kano, Mikio
%T Strong Tutte Type Conditions and Factors of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1057-1065
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a7/
%G en
%F DMGT_2020_40_4_a7
Yan, Zheng; Kano, Mikio. Strong Tutte Type Conditions and Factors of Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1057-1065. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a7/