Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a5, author = {Borodin, Oleg V. and Bykov, Mikhail A. and Ivanova, Anna O.}, title = {Low {5-Stars} at {5-Vertices} in {3-Polytopes} with {Minimum} {Degree} 5 and {No} {Vertices} of {Degree} from 7 to 9}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1025--1033}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a5/} }
TY - JOUR AU - Borodin, Oleg V. AU - Bykov, Mikhail A. AU - Ivanova, Anna O. TI - Low 5-Stars at 5-Vertices in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree from 7 to 9 JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 1025 EP - 1033 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a5/ LA - en ID - DMGT_2020_40_4_a5 ER -
%0 Journal Article %A Borodin, Oleg V. %A Bykov, Mikhail A. %A Ivanova, Anna O. %T Low 5-Stars at 5-Vertices in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree from 7 to 9 %J Discussiones Mathematicae. Graph Theory %D 2020 %P 1025-1033 %V 40 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a5/ %G en %F DMGT_2020_40_4_a5
Borodin, Oleg V.; Bykov, Mikhail A.; Ivanova, Anna O. Low 5-Stars at 5-Vertices in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree from 7 to 9. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1025-1033. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a5/
[1] O.V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109–117. doi:10.1002/mana.19921580108
[2] O.V. Borodin and A.O. Ivanova, Describing 4 -stars at 5 -vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710–1714. doi:10.1016/j.disc.2013.04.025
[3] O.V. Borodin and A.O. Ivanova, Light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, Sib.Èlektron. Mat. Izv. 13 (2016) 584–591. doi:10.17377/semi.2016.13.045
[4] O.V. Borodin and A.O. Ivanova, Light and low 5 -stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470–475. doi:10.1134/S0037446616030071
[5] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5 -stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546. doi:10.7151/dmgt.1748
[6] O.V. Borodin, A.O. Ivanova and O.N. Kazak, Describing neighborhoods of 5 -vertices in 3-polytopes with minimum degree 5 and without vertices of degrees from 7 to 11, Discuss. Math. Graph Theory 38 (2018) 615–625. doi:10.7151/dmgt.2024
[7] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil’eva, Heights of minor 5 -stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825–829. doi:10.1016/j.disc.2017.11.021
[8] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5 -stars in 3-polytopes with minimum degree 5 and no 6 -vertices, Discrete Math. 340 (2017) 1612–1616. doi:10.1016/j.disc.2017.03.002
[9] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light 5-stars in 3-polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600–605. doi:10.1134/S003744661704005X
[10] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164. doi:10.7151/dmgt.1071
[11] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225–236. doi:10.2307/2370527
[12] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207–217. doi:10.7151/dmgt.1035
[13] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (9) (1940) 27–43.
[14] E. Steinitz, Polyeder und Raumeinteilungen, in: Enzykl. Math. Wiss. (Geometrie), 3 (1922) 1–139.
[15] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968