Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 985-994.

Voir la notice de l'article provenant de la source Library of Science

In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P5 of 3-polytopes with minimum degree 5. Given a 3-polytope P, by w(P) denote the minimum of the degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P. In 1996, Jendrol’ and Madaras showed that if a polytope P in P5 is allowed to have a 5-vertex adjacent to four 5-vertices, then w(P) can be arbitrarily large. For each P in P5 without vertices of degree 6 and 5-vertices adjacent to four 5-vertices, it follows from Lebesgue’s Theorem that w(P) ≤ 68. Recently, this bound was lowered to w(P) ≤ 55 by Borodin, Ivanova, and Jensen and then to w(P) ≤ 51 by Borodin and Ivanova. In this note, we prove that every such polytope P satisfies w(P) ≤ 44, which bound is sharp.
Keywords: planar map, planar graph, 3-polytope, structural properties, 5-star, weight, height
@article{DMGT_2020_40_4_a2,
     author = {Borodin, Oleg V. and Ivanova, Anna O. and Vasil{\textquoteright}eva, Ekaterina I.},
     title = {Light {Minor} {5-Stars} in {3-Polytopes} with {Minimum} {Degree} 5 and {No} {6-Vertices}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {985--994},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/}
}
TY  - JOUR
AU  - Borodin, Oleg V.
AU  - Ivanova, Anna O.
AU  - Vasil’eva, Ekaterina I.
TI  - Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 985
EP  - 994
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/
LA  - en
ID  - DMGT_2020_40_4_a2
ER  - 
%0 Journal Article
%A Borodin, Oleg V.
%A Ivanova, Anna O.
%A Vasil’eva, Ekaterina I.
%T Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 985-994
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/
%G en
%F DMGT_2020_40_4_a2
Borodin, Oleg V.; Ivanova, Anna O.; Vasil’eva, Ekaterina I. Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 985-994. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/

[1] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710–1714. doi:10.1016/j.disc.2013.04.025

[2] O.V. Borodin and A.O. Ivanova, Light and low 5-stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470–475. doi:10.1134/S0037446616030071

[3] O.V. Borodin and A.O. Ivanova, Light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, Sib. Èlektron. Mat. Izv. 13 (2016) 584–591. doi:10.17377/semi.2016.13.045

[4] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546. doi:10.7151/dmgt.1748

[5] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil’eva, Heights of minor 5-stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825–829. doi:10.1016/j.disc.2017.11.021

[6] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5-stars in 3-polytopes with minimum degree 5 and no 6 -vertices, Discrete Math. 340 (2017) 1612–1616. doi:10.1016/j.disc.2017.03.002

[7] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light minor 5-stars in 3-polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600–605. doi:10.1134/S003744661704005X

[8] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164. doi:10.7151/dmgt.1071

[9] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225–236. doi:10.2307/2370527

[10] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207–217. doi:10.7151/dmgt.1035

[11] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—A survey, Discrete Math. 313 (2013) 406–421. doi:10.1016/j.disc.2012.11.007

[12] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27–43.

[13] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968