Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 985-994

Voir la notice de l'article provenant de la source Library of Science

In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P5 of 3-polytopes with minimum degree 5. Given a 3-polytope P, by w(P) denote the minimum of the degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P. In 1996, Jendrol’ and Madaras showed that if a polytope P in P5 is allowed to have a 5-vertex adjacent to four 5-vertices, then w(P) can be arbitrarily large. For each P in P5 without vertices of degree 6 and 5-vertices adjacent to four 5-vertices, it follows from Lebesgue’s Theorem that w(P) ≤ 68. Recently, this bound was lowered to w(P) ≤ 55 by Borodin, Ivanova, and Jensen and then to w(P) ≤ 51 by Borodin and Ivanova. In this note, we prove that every such polytope P satisfies w(P) ≤ 44, which bound is sharp.
Keywords: planar map, planar graph, 3-polytope, structural properties, 5-star, weight, height
@article{DMGT_2020_40_4_a2,
     author = {Borodin, Oleg V. and Ivanova, Anna O. and Vasil{\textquoteright}eva, Ekaterina I.},
     title = {Light {Minor} {5-Stars} in {3-Polytopes} with {Minimum} {Degree} 5 and {No} {6-Vertices}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {985--994},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/}
}
TY  - JOUR
AU  - Borodin, Oleg V.
AU  - Ivanova, Anna O.
AU  - Vasil’eva, Ekaterina I.
TI  - Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 985
EP  - 994
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/
LA  - en
ID  - DMGT_2020_40_4_a2
ER  - 
%0 Journal Article
%A Borodin, Oleg V.
%A Ivanova, Anna O.
%A Vasil’eva, Ekaterina I.
%T Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 985-994
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/
%G en
%F DMGT_2020_40_4_a2
Borodin, Oleg V.; Ivanova, Anna O.; Vasil’eva, Ekaterina I. Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 985-994. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/