Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a2, author = {Borodin, Oleg V. and Ivanova, Anna O. and Vasil{\textquoteright}eva, Ekaterina I.}, title = {Light {Minor} {5-Stars} in {3-Polytopes} with {Minimum} {Degree} 5 and {No} {6-Vertices}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {985--994}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/} }
TY - JOUR AU - Borodin, Oleg V. AU - Ivanova, Anna O. AU - Vasil’eva, Ekaterina I. TI - Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 985 EP - 994 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/ LA - en ID - DMGT_2020_40_4_a2 ER -
%0 Journal Article %A Borodin, Oleg V. %A Ivanova, Anna O. %A Vasil’eva, Ekaterina I. %T Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices %J Discussiones Mathematicae. Graph Theory %D 2020 %P 985-994 %V 40 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/ %G en %F DMGT_2020_40_4_a2
Borodin, Oleg V.; Ivanova, Anna O.; Vasil’eva, Ekaterina I. Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 985-994. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a2/
[1] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710–1714. doi:10.1016/j.disc.2013.04.025
[2] O.V. Borodin and A.O. Ivanova, Light and low 5-stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470–475. doi:10.1134/S0037446616030071
[3] O.V. Borodin and A.O. Ivanova, Light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, Sib. Èlektron. Mat. Izv. 13 (2016) 584–591. doi:10.17377/semi.2016.13.045
[4] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546. doi:10.7151/dmgt.1748
[5] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil’eva, Heights of minor 5-stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825–829. doi:10.1016/j.disc.2017.11.021
[6] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5-stars in 3-polytopes with minimum degree 5 and no 6 -vertices, Discrete Math. 340 (2017) 1612–1616. doi:10.1016/j.disc.2017.03.002
[7] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light minor 5-stars in 3-polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600–605. doi:10.1134/S003744661704005X
[8] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164. doi:10.7151/dmgt.1071
[9] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225–236. doi:10.2307/2370527
[10] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207–217. doi:10.7151/dmgt.1035
[11] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—A survey, Discrete Math. 313 (2013) 406–421. doi:10.1016/j.disc.2012.11.007
[12] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27–43.
[13] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968