Comparing Eccentricity-Based Graph Invariants
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1111-1125.

Voir la notice de l'article provenant de la source Library of Science

The first and second Zagreb eccentricity indices (EM1 and EM2), the eccentric distance sum (EDS), and the connective eccentricity index (CEI) are all recently conceived eccentricity-based graph invariants, some of which found applications in chemistry. We prove that EDS ≥ EM1 for any connected graph, whereas EDS gt; EM2 for trees. Moreover, in the case of trees, EM1 ≥ CEI, whereas EM2 gt; CEI for trees with at least three vertices. In addition, we compare EDS with EM2, and compare EM1, EM2 with CEI for general connected graphs under some restricted conditions.
Keywords: eccentricity (of vertex), Zagreb eccentricity index, eccentric distance sum, connective eccentricity index
@article{DMGT_2020_40_4_a11,
     author = {Hua, Hongbo and Wang, Hongzhuan and Gutman, Ivan},
     title = {Comparing {Eccentricity-Based} {Graph} {Invariants}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1111--1125},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/}
}
TY  - JOUR
AU  - Hua, Hongbo
AU  - Wang, Hongzhuan
AU  - Gutman, Ivan
TI  - Comparing Eccentricity-Based Graph Invariants
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1111
EP  - 1125
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/
LA  - en
ID  - DMGT_2020_40_4_a11
ER  - 
%0 Journal Article
%A Hua, Hongbo
%A Wang, Hongzhuan
%A Gutman, Ivan
%T Comparing Eccentricity-Based Graph Invariants
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1111-1125
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/
%G en
%F DMGT_2020_40_4_a11
Hua, Hongbo; Wang, Hongzhuan; Gutman, Ivan. Comparing Eccentricity-Based Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1111-1125. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/

[1] Y. Alizadeh and S. Klavžar, Complexity of topological indices: The case of connective eccentric index, MATCH Commun. Math. Comput. Chem. 76 (2016) 659–667.

[2] M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures, Networks 58 (2011) 95–102. doi:10.1002/net.20450

[3] M. Azari and A. Iranmanesh, Computing the eccentric-distance sum for graph operations, Discrete Appl. Math. 161 (2013) 2827–2840. doi:10.1016/j.dam.2013.06.003

[4] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).

[5] B. Borovićanin, K.C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.

[6] K.C. Das, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013) 117–125. doi:10.26493/1855-3974.237.48a

[7] K.C. Das, Comparison between Zagreb eccentricity indices and the eccentric connectivity index, the second geometric-arithmetic index and the Graovac-Ghorbani index, Croat. Chem. Acta 89 (2016) 505–510. doi:10.5562/cca3007

[8] K.C. Das, I. Gutman and M.J. Nadjafi-Arani, Relations between distance-based and degree-based topological indices, Appl. Math. Comput. 270 (2015) 142–147. doi:10.1016/j.amc.2015.08.061

[9] K.C. Das and M.J. Nadjafi-Arani, Comparison between the Szeged index and the eccentric connectivity index, Discrete Appl. Math. 186 (2015) 74–86. doi:10.1016/j.dam.2015.01.011

[10] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211–249. doi:10.1023/A:1010767517079

[11] S. Fajtlowicz and W.A. Waller, On two conjectures of GRAFFITI II, Congr. Numer. 60 (1987) 187–197.

[12] X. Geng, S. Li and M. Zhang, Extremal values on the eccentric distance sum of trees, Discrete Appl. Math. 161 (2013) 2427–2439. doi:10.1016/j.dam.2013.05.023

[13] M. Ghorbani and M.A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (2012) 93–100. doi:10.2298/FIL1201093G

[14] S. Gupta, M. Singh and A.K. Madan, Connective eccentricity index: a novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18–25. doi:10.1016/S1093-3263(00)00027-9

[15] S. Gupta, M. Singh and A.K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002) 386–401. doi:10.1016/S0022-247X(02)00373-6

[16] I. Gutman, B. Ruščić, N. Trinajstić and C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405. doi:10.1063/1.430994

[17] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. doi:10.1016/0009-2614(72)85099-1

[18] H. Hua, Y. Chen and K.C. Das, The difference between remoteness and radius of a graph, Discrete Appl. Math. 187 (2015) 103–110. doi:10.1016/j.dam.2015.02.007

[19] H. Hua and K.C. Das, The relationship between the eccentric connectivity index and Zagreb indices, Discrete Appl. Math. 161 (2013) 2480–2491. doi:10.1016/j.dam.2013.05.034

[20] H. Hua and K.C. Das, Proof of conjectures on remoteness and proximity in graphs, Discrete Appl. Math. 171 (2014) 72–80. doi:10.1016/j.dam.2014.02.011

[21] H. Hua, K. Xu and S. Wen, A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011) 364–366. doi:10.1016/j.jmaa.2011.04.054

[22] H. Hua, S. Zhang and K. Xu, Further results on the eccentric distance sum, Discrete Appl. Math. 160 (2012) 170–180. doi:10.1016/j.dam.2011.10.002

[23] A. Ilić, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011) 590–600. doi:10.1016/j.jmaa.2011.02.086

[24] S. Li and Y. Wu, On the extreme eccentric distance sum of graphs with some given parameters, Discrete Appl. Math. 206 (2016) 90–99. doi:10.1016/j.dam.2016.01.027

[25] Z. Luo and J. Wu, Zagreb eccentricity indices of the generalized hierarchical product graphs and their applications, J. Appl. Math. 1 (2014) 1–8. doi:10.1155/2014/241712

[26] V. Mukungunugwa and S. Mukwembi, On eccentric distance sum and minimum degree, Discrete Appl. Math. 175 (2014) 55–61. doi:10.1016/j.dam.2014.05.019

[27] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.

[28] X. Qi and Z. Du, On Zagreb eccentricity indices of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 241–256.

[29] X. Qi, B. Zhou and J. Li, Zagreb eccentricity indices of unicyclic graphs, Discrete Appl. Math. 233 (2017) 166–174. doi:10.1016/j.dam.2017.08.001

[30] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Sloven. 57 (2010) 524–528.

[31] R. Xing, B. Zhou and N. Trinajstić, On Zagreb eccentricity indices, Croat. Chem. Acta 84 (2011) 493–497. doi:10.5562/cca1801

[32] G. Yu and L. Feng, On the connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem. 69 (2013) 611–628.

[33] G. Yu, L. Feng and A. Ilić, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 99–107. doi:10.1016/j.jmaa.2010.08.054

[34] G. Yu, H. Qu, L. Tang and L. Feng, On the connective eccentricity index of trees and unicyclic graphs with given diameter, J. Math. Anal. Appl. 420 (2014) 1776–1786. doi:10.1016/j.jmaa.2014.06.050

[35] H. Zhang, S. Li and B. Xu Extremal graphs of given parameters with respect to the eccentricity distance sum and the eccentric connectivity index, Discrete Appl. Math. 254 (2019) 204–221. doi:10.1016/j.dam.2018.07.013