Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a11, author = {Hua, Hongbo and Wang, Hongzhuan and Gutman, Ivan}, title = {Comparing {Eccentricity-Based} {Graph} {Invariants}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1111--1125}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/} }
TY - JOUR AU - Hua, Hongbo AU - Wang, Hongzhuan AU - Gutman, Ivan TI - Comparing Eccentricity-Based Graph Invariants JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 1111 EP - 1125 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/ LA - en ID - DMGT_2020_40_4_a11 ER -
Hua, Hongbo; Wang, Hongzhuan; Gutman, Ivan. Comparing Eccentricity-Based Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1111-1125. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/
[1] Y. Alizadeh and S. Klavžar, Complexity of topological indices: The case of connective eccentric index, MATCH Commun. Math. Comput. Chem. 76 (2016) 659–667.
[2] M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures, Networks 58 (2011) 95–102. doi:10.1002/net.20450
[3] M. Azari and A. Iranmanesh, Computing the eccentric-distance sum for graph operations, Discrete Appl. Math. 161 (2013) 2827–2840. doi:10.1016/j.dam.2013.06.003
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).
[5] B. Borovićanin, K.C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
[6] K.C. Das, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013) 117–125. doi:10.26493/1855-3974.237.48a
[7] K.C. Das, Comparison between Zagreb eccentricity indices and the eccentric connectivity index, the second geometric-arithmetic index and the Graovac-Ghorbani index, Croat. Chem. Acta 89 (2016) 505–510. doi:10.5562/cca3007
[8] K.C. Das, I. Gutman and M.J. Nadjafi-Arani, Relations between distance-based and degree-based topological indices, Appl. Math. Comput. 270 (2015) 142–147. doi:10.1016/j.amc.2015.08.061
[9] K.C. Das and M.J. Nadjafi-Arani, Comparison between the Szeged index and the eccentric connectivity index, Discrete Appl. Math. 186 (2015) 74–86. doi:10.1016/j.dam.2015.01.011
[10] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211–249. doi:10.1023/A:1010767517079
[11] S. Fajtlowicz and W.A. Waller, On two conjectures of GRAFFITI II, Congr. Numer. 60 (1987) 187–197.
[12] X. Geng, S. Li and M. Zhang, Extremal values on the eccentric distance sum of trees, Discrete Appl. Math. 161 (2013) 2427–2439. doi:10.1016/j.dam.2013.05.023
[13] M. Ghorbani and M.A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (2012) 93–100. doi:10.2298/FIL1201093G
[14] S. Gupta, M. Singh and A.K. Madan, Connective eccentricity index: a novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18–25. doi:10.1016/S1093-3263(00)00027-9
[15] S. Gupta, M. Singh and A.K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002) 386–401. doi:10.1016/S0022-247X(02)00373-6
[16] I. Gutman, B. Ruščić, N. Trinajstić and C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405. doi:10.1063/1.430994
[17] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. doi:10.1016/0009-2614(72)85099-1
[18] H. Hua, Y. Chen and K.C. Das, The difference between remoteness and radius of a graph, Discrete Appl. Math. 187 (2015) 103–110. doi:10.1016/j.dam.2015.02.007
[19] H. Hua and K.C. Das, The relationship between the eccentric connectivity index and Zagreb indices, Discrete Appl. Math. 161 (2013) 2480–2491. doi:10.1016/j.dam.2013.05.034
[20] H. Hua and K.C. Das, Proof of conjectures on remoteness and proximity in graphs, Discrete Appl. Math. 171 (2014) 72–80. doi:10.1016/j.dam.2014.02.011
[21] H. Hua, K. Xu and S. Wen, A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011) 364–366. doi:10.1016/j.jmaa.2011.04.054
[22] H. Hua, S. Zhang and K. Xu, Further results on the eccentric distance sum, Discrete Appl. Math. 160 (2012) 170–180. doi:10.1016/j.dam.2011.10.002
[23] A. Ilić, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011) 590–600. doi:10.1016/j.jmaa.2011.02.086
[24] S. Li and Y. Wu, On the extreme eccentric distance sum of graphs with some given parameters, Discrete Appl. Math. 206 (2016) 90–99. doi:10.1016/j.dam.2016.01.027
[25] Z. Luo and J. Wu, Zagreb eccentricity indices of the generalized hierarchical product graphs and their applications, J. Appl. Math. 1 (2014) 1–8. doi:10.1155/2014/241712
[26] V. Mukungunugwa and S. Mukwembi, On eccentric distance sum and minimum degree, Discrete Appl. Math. 175 (2014) 55–61. doi:10.1016/j.dam.2014.05.019
[27] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[28] X. Qi and Z. Du, On Zagreb eccentricity indices of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 241–256.
[29] X. Qi, B. Zhou and J. Li, Zagreb eccentricity indices of unicyclic graphs, Discrete Appl. Math. 233 (2017) 166–174. doi:10.1016/j.dam.2017.08.001
[30] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Sloven. 57 (2010) 524–528.
[31] R. Xing, B. Zhou and N. Trinajstić, On Zagreb eccentricity indices, Croat. Chem. Acta 84 (2011) 493–497. doi:10.5562/cca1801
[32] G. Yu and L. Feng, On the connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem. 69 (2013) 611–628.
[33] G. Yu, L. Feng and A. Ilić, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 99–107. doi:10.1016/j.jmaa.2010.08.054
[34] G. Yu, H. Qu, L. Tang and L. Feng, On the connective eccentricity index of trees and unicyclic graphs with given diameter, J. Math. Anal. Appl. 420 (2014) 1776–1786. doi:10.1016/j.jmaa.2014.06.050
[35] H. Zhang, S. Li and B. Xu Extremal graphs of given parameters with respect to the eccentricity distance sum and the eccentric connectivity index, Discrete Appl. Math. 254 (2019) 204–221. doi:10.1016/j.dam.2018.07.013