Comparing Eccentricity-Based Graph Invariants
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1111-1125

Voir la notice de l'article provenant de la source Library of Science

The first and second Zagreb eccentricity indices (EM1 and EM2), the eccentric distance sum (EDS), and the connective eccentricity index (CEI) are all recently conceived eccentricity-based graph invariants, some of which found applications in chemistry. We prove that EDS ≥ EM1 for any connected graph, whereas EDS gt; EM2 for trees. Moreover, in the case of trees, EM1 ≥ CEI, whereas EM2 gt; CEI for trees with at least three vertices. In addition, we compare EDS with EM2, and compare EM1, EM2 with CEI for general connected graphs under some restricted conditions.
Keywords: eccentricity (of vertex), Zagreb eccentricity index, eccentric distance sum, connective eccentricity index
@article{DMGT_2020_40_4_a11,
     author = {Hua, Hongbo and Wang, Hongzhuan and Gutman, Ivan},
     title = {Comparing {Eccentricity-Based} {Graph} {Invariants}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1111--1125},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/}
}
TY  - JOUR
AU  - Hua, Hongbo
AU  - Wang, Hongzhuan
AU  - Gutman, Ivan
TI  - Comparing Eccentricity-Based Graph Invariants
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1111
EP  - 1125
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/
LA  - en
ID  - DMGT_2020_40_4_a11
ER  - 
%0 Journal Article
%A Hua, Hongbo
%A Wang, Hongzhuan
%A Gutman, Ivan
%T Comparing Eccentricity-Based Graph Invariants
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1111-1125
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/
%G en
%F DMGT_2020_40_4_a11
Hua, Hongbo; Wang, Hongzhuan; Gutman, Ivan. Comparing Eccentricity-Based Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1111-1125. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a11/