The Hanoi Graph $H_4^3$
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1095-1109

Voir la notice de l'article provenant de la source Library of Science

Metric properties of Hanoi graphs H_p^n are not as well understood as those of the closely related, but structurally simpler Sierpiński graphs S_p^p. The most outstanding open problem is to find the domination number of Hanoi graphs. Here we concentrate on the first non-trivial case of H_4^3, which contains no 1-perfect code. The metric dimension and the dominator chromatic number of H_4^3 will be determined as well. This leads to various conjectures for the general case and will thus provide an orientation for future research.
Keywords: Hanoi graphs, Sierpiński graphs, metric dimension, domination number, dominator chromatic number
@article{DMGT_2020_40_4_a10,
     author = {Hinz, Andreas M. and Movarraei, Nazanin},
     title = {The {Hanoi} {Graph} $H_4^3$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1095--1109},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/}
}
TY  - JOUR
AU  - Hinz, Andreas M.
AU  - Movarraei, Nazanin
TI  - The Hanoi Graph $H_4^3$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1095
EP  - 1109
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/
LA  - en
ID  - DMGT_2020_40_4_a10
ER  - 
%0 Journal Article
%A Hinz, Andreas M.
%A Movarraei, Nazanin
%T The Hanoi Graph $H_4^3$
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1095-1109
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/
%G en
%F DMGT_2020_40_4_a10
Hinz, Andreas M.; Movarraei, Nazanin. The Hanoi Graph $H_4^3$. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1095-1109. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/