Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a10, author = {Hinz, Andreas M. and Movarraei, Nazanin}, title = {The {Hanoi} {Graph} $H_4^3$}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1095--1109}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/} }
Hinz, Andreas M.; Movarraei, Nazanin. The Hanoi Graph $H_4^3$. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1095-1109. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/
[1] R.M. Gera, On dominator colorings in graphs, Graph Theory Notes N.Y. 52 (2007) 25–30.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[3] A.M. Hinz, Open problems for Hanoi and Sierpiński graphs, Electron. Notes Discrete Math. 63 (2017) 23–31. doi:10.1016/j.endm.2017.10.058
[4] A.M. Hinz and C. Holz auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177 (2014) 111–120. doi:10.1016/j.dam.2014.05.049
[5] A.M. Hinz, S. Klavžar and C. Petr, The Tower of Hanoi—Myths and Maths, Second Edition (Springer/Birkhäuser, Cham, 2018).
[6] A.M. Hinz, S. Klavžar and S.S. Zemljič, Sierpiński graphs as spanning subgraphs of Hanoi graphs, Cent. Eur. J. Math. 11 (2013) 1153–1157. doi:10.2478/s11533-013-0227-7
[7] A.M. Hinz, S. Klavžar and S.S. Zemljič, A survey and classification of Sierpiński-type graphs, Discrete Appl. Math. 217 (2017) 565–600. doi:10.1016/j.dam.2016.09.024
[8] A.M. Hinz, A. Kostov, F. Kneißl, F. Sürer and A. Danek, A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles, Inform. Sci. 179 (2009) 2934–2947. doi:10.1016/j.ins.2009.04.010
[9] A.M. Hinz and D. Parisse, On the planarity of Hanoi graphs, Expo. Math. 20 (2002) 263–268. doi:10.1016/S0723-0869(02)80023-8
[10] A.M. Hinz and D. Parisse, Coloring Hanoi and Sierpiński graphs, Discrete Math. 312 (2012) 1521–1535. doi:10.1016/j.disc.2011.08.019
[11] J.M. Jeyaseeli, N. Movarraei and S. Arumugam, Dominator coloring of generalized Petersen graphs, Lecture Notes in Comput. Sci. 10398 (2017) 144–151. doi:10.1007/978-3-319-64419-6_19
[12] S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, J. Graph Theory 50 (2005) 186–198. doi:10.1002/jgt.20107
[13] S. Klavžar and S.S. Zemljič, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013) 72–82. doi:10.2298/AADM130109001K
[14] M. Schlosser, Abstände in Sierpiński- und Hanoi-Graphen und metrische Dimension (BSc Thesis, Ludwig-Maximilians-Universität, München, 2017).
[15] S. Varghese, A. Vijayakumar and A.M. Hinz, Power domination in Knödel graphs and Hanoi graphs, Discuss. Math. Graph Theory 38 (2018) 63–74. doi:10.7151/dmgt.1993