The Hanoi Graph $H_4^3$
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1095-1109.

Voir la notice de l'article provenant de la source Library of Science

Metric properties of Hanoi graphs H_p^n are not as well understood as those of the closely related, but structurally simpler Sierpiński graphs S_p^p. The most outstanding open problem is to find the domination number of Hanoi graphs. Here we concentrate on the first non-trivial case of H_4^3, which contains no 1-perfect code. The metric dimension and the dominator chromatic number of H_4^3 will be determined as well. This leads to various conjectures for the general case and will thus provide an orientation for future research.
Keywords: Hanoi graphs, Sierpiński graphs, metric dimension, domination number, dominator chromatic number
@article{DMGT_2020_40_4_a10,
     author = {Hinz, Andreas M. and Movarraei, Nazanin},
     title = {The {Hanoi} {Graph} $H_4^3$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1095--1109},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/}
}
TY  - JOUR
AU  - Hinz, Andreas M.
AU  - Movarraei, Nazanin
TI  - The Hanoi Graph $H_4^3$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 1095
EP  - 1109
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/
LA  - en
ID  - DMGT_2020_40_4_a10
ER  - 
%0 Journal Article
%A Hinz, Andreas M.
%A Movarraei, Nazanin
%T The Hanoi Graph $H_4^3$
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 1095-1109
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/
%G en
%F DMGT_2020_40_4_a10
Hinz, Andreas M.; Movarraei, Nazanin. The Hanoi Graph $H_4^3$. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 1095-1109. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a10/

[1] R.M. Gera, On dominator colorings in graphs, Graph Theory Notes N.Y. 52 (2007) 25–30.

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[3] A.M. Hinz, Open problems for Hanoi and Sierpiński graphs, Electron. Notes Discrete Math. 63 (2017) 23–31. doi:10.1016/j.endm.2017.10.058

[4] A.M. Hinz and C. Holz auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177 (2014) 111–120. doi:10.1016/j.dam.2014.05.049

[5] A.M. Hinz, S. Klavžar and C. Petr, The Tower of Hanoi—Myths and Maths, Second Edition (Springer/Birkhäuser, Cham, 2018).

[6] A.M. Hinz, S. Klavžar and S.S. Zemljič, Sierpiński graphs as spanning subgraphs of Hanoi graphs, Cent. Eur. J. Math. 11 (2013) 1153–1157. doi:10.2478/s11533-013-0227-7

[7] A.M. Hinz, S. Klavžar and S.S. Zemljič, A survey and classification of Sierpiński-type graphs, Discrete Appl. Math. 217 (2017) 565–600. doi:10.1016/j.dam.2016.09.024

[8] A.M. Hinz, A. Kostov, F. Kneißl, F. Sürer and A. Danek, A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles, Inform. Sci. 179 (2009) 2934–2947. doi:10.1016/j.ins.2009.04.010

[9] A.M. Hinz and D. Parisse, On the planarity of Hanoi graphs, Expo. Math. 20 (2002) 263–268. doi:10.1016/S0723-0869(02)80023-8

[10] A.M. Hinz and D. Parisse, Coloring Hanoi and Sierpiński graphs, Discrete Math. 312 (2012) 1521–1535. doi:10.1016/j.disc.2011.08.019

[11] J.M. Jeyaseeli, N. Movarraei and S. Arumugam, Dominator coloring of generalized Petersen graphs, Lecture Notes in Comput. Sci. 10398 (2017) 144–151. doi:10.1007/978-3-319-64419-6_19

[12] S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, J. Graph Theory 50 (2005) 186–198. doi:10.1002/jgt.20107

[13] S. Klavžar and S.S. Zemljič, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013) 72–82. doi:10.2298/AADM130109001K

[14] M. Schlosser, Abstände in Sierpiński- und Hanoi-Graphen und metrische Dimension (BSc Thesis, Ludwig-Maximilians-Universität, München, 2017).

[15] S. Varghese, A. Vijayakumar and A.M. Hinz, Power domination in Knödel graphs and Hanoi graphs, Discuss. Math. Graph Theory 38 (2018) 63–74. doi:10.7151/dmgt.1993