Super Edge-Connectivity and Zeroth-Order Randić Index
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 971-984.

Voir la notice de l'article provenant de la source Library of Science

Define the zeroth-order Randić index as R^0(G)=∑_x∈V(G)1/√(d_G(x)), where d_G(x) denotes the degree of the vertex x. In this paper, we present two sufficient conditions for graphs and triangle-free graphs, respectively, to be super edge-connected in terms of the zeroth-order Randić index.
Keywords: zeroth-order Randić index, super edge-connected, degree, triangle-free graph, minimum degree
@article{DMGT_2020_40_4_a1,
     author = {He, Zhihong and Lu, Mei},
     title = {Super {Edge-Connectivity} and {Zeroth-Order} {Randi\'c} {Index}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {971--984},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a1/}
}
TY  - JOUR
AU  - He, Zhihong
AU  - Lu, Mei
TI  - Super Edge-Connectivity and Zeroth-Order Randić Index
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 971
EP  - 984
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a1/
LA  - en
ID  - DMGT_2020_40_4_a1
ER  - 
%0 Journal Article
%A He, Zhihong
%A Lu, Mei
%T Super Edge-Connectivity and Zeroth-Order Randić Index
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 971-984
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a1/
%G en
%F DMGT_2020_40_4_a1
He, Zhihong; Lu, Mei. Super Edge-Connectivity and Zeroth-Order Randić Index. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 971-984. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a1/

[1] D. Bauer, F.T. Boesch, C. Suffel and R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: The Theory and Application of Graphs, G. Chartrand, Y. Alavi, D. Goldsmith, L. Lesniak Foster and D. Lick (Ed(s)), (Wiley, New York, 1981) 45–54.

[2] F. Boesch, On unreliability polynomials and graph connectivity in reliable network synthesis, J. Graph Theory 10 (1986) 339–352. doi:10.1002/jgt.3190100311

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Application (Elsevier, New York, 1976).

[4] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778–781. doi:10.1137/0114065

[5] Z. Chen, G. Su and L. Volkmann, Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected graphs, Discrete Appl. Math. 218 (2017) 64–70. doi:10.1016/j.dam.2016.11.002

[6] P. Dankelmann, A. Hellwig and L. Volkmann, Inverse degree and edge-connectivity, Discrete Math. 309 (2009) 2943–2947. doi:10.1016/j.disc.2008.06.041

[7] P. Dankelmann and L. Volkmann, New sufficient conditions for equality of minimum degree and edge-connectivity, Ars Combin. 40 (1995) 270–278.

[8] P. Dankelmann and L. Volkmann, Degree sequence condition for maximally edge-connected graphs depending on the clique number, Discrete Math. 211 (2000) 217–223. doi:10.1016/S0012-365X(99)00279-4

[9] P. Dankelmann and L. Volkmann, Degree sequence condition for maximally edge-connected graphs and digraphs, J. Graph Theory 26 (1997) 27–34. doi:10.1002/(SICI)1097-0118(199709)26:1〈27::AID-JGT4〉3.0.CO;2-J

[10] M.A. Fiol, On super-edge-connected digraphs and bipartite digraphs, J. Graph Theory 16 (1992) 545–555. doi:10.1002/jgt.3190160603

[11] A.K. Kelmans, Asymptotic formulas for the probability of k-connectedness of random graphs, Theory Probab. Appl. 17 (1972) 243–254. doi:10.1137/1117029

[12] L.B. Kier and L.H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, European J. Med. Chem. 12 (1977) 307–312.

[13] L.B. Klein and L.H. Hall, Molecular Connectivity in Structure Activity Analysis (Research Studies Press, Wiley, Chichester, UK, 1986).

[14] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974) 351–354. doi:10.1016/0012-365X(74)90154-X

[15] A. Lin, R. Luo and X. Zha, On sharp bounds of the zeroth-order general Randić index of certain unicyclic graphs, Appl. Math. Lett. 22 (2009) 585–589. doi:10.1016/j.aml.2008.06.035

[16] L. Plesník and S. Znám, On equality of edge-connectivity and minimum degree of a graph, Arch. Math. (Brno) 25 (1989) 19–25.

[17] T. Soneoka, Super-edge-connectivity of dense digraphs and graphs, Discrete Appl. Math. 37/38 (1992) 511–523. doi:10.1016/0166-218X(92)90155-4

[18] G. Su, L. Xiong, X. Su and G. Li, Maximally edge-connected graphs and zeroth-order general Randić index for α ≤ −1, J. Comb. Optim. 31 (2016) 182–195. doi:10.1007/s10878-014-9728-y

[19] Y. Tian, L. Guo, J. Meng and C. Qin, Inverse degree and super edge-connectivity, Int. J. Comput. Math. 89 (2012) 752–759. doi:10.1080/00207160.2012.663491

[20] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapook 48 (1941) 436–452.