Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_4_a0, author = {Bre\v{s}ar, Bo\v{s}tjan and Ferme, Jasmina and Klav\v{z}ar, Sandi and Rall, Douglas F.}, title = {A {Survey} on {Packing} {Colorings}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {923--970}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a0/} }
TY - JOUR AU - Brešar, Boštjan AU - Ferme, Jasmina AU - Klavžar, Sandi AU - Rall, Douglas F. TI - A Survey on Packing Colorings JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 923 EP - 970 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a0/ LA - en ID - DMGT_2020_40_4_a0 ER -
Brešar, Boštjan; Ferme, Jasmina; Klavžar, Sandi; Rall, Douglas F. A Survey on Packing Colorings. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 923-970. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a0/
[1] G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem (q, q − 4) graphs, Lecture Notes in Comput. Sci. 7422 (2012) 309–319. doi:10.1007/978-3-642-32147-4_28
[2] G. Argiro o, G. Nasini and P. Torres, The packing coloring problem for lobsters and partner limited graphs, Discrete Appl. Math. 164 (2014) 373–382. doi:10.1016/j.dam.2012.08.008
[3] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of cubic graphs, Discrete Math. 341 (2018) 474–483. doi:10.1016/j.disc.2017.09.014
[4] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of subdivisions of cubic graphs, Graphs Combin. 35 (2019) 513–537. doi:10.1007/s00373-019-02016-3
[5] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77–89. doi:10.1016/S0012-365X(98)00393-8
[6] D. Božović and I. Peterin, A note on the packing chromatic number of lexicographic products. arXiv:1909.11325 [math.CO] (25 Sep. 2019)
[7] B. Brešar and J. Ferme, Packing coloring of Sierpiński-type graphs, Aequationes Math. 92 (2018) 1091–1118. doi:10.1007/s00010-018-0561-8
[8] B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, Discrete Math. 341 (2018) 2337–2342. doi:10.1016/j.disc.2018.05.004
[9] B. Brešar and J. Ferme, Graphs that are critical for the packing chromatic number, Discuss. Math. Graph Theory (2020), in press. doi:10.7151/dmgt.2298
[10] B. Brešar, N. Gastineau and O. Togni, Packing colorings of subcubic outerplanar graphs, Aequationes Math., to appear.
[11] B. Brešar, S. Klavžar and D.F. Rall, Packing chromatic number of base-3 Sierpiński graphs, Graphs Combin. 32 (2016) 1313–1327. doi:10.1007/s00373-015-1647-x
[12] B. Brešar, S. Klavžar and D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007) 2303–2311. doi:10.1016/j.dam.2007.06.008
[13] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number under local changes in a graph, Discrete Math. 340 (2017) 1110–1115. doi:10.1016/j.disc.2016.09.030
[14] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number, (1, 1, 2, 2)-colorings, and characterizing the Petersen graph, Aequationes Math. 91 (2017) 169–184. doi:10.1007/s00010-016-0461-8
[15] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number versus chromatic and clique number, Aequationes Math. 92 (2018) 497–513. doi:10.1007/s00010-017-0520-9
[16] D.W. Cranston and S.-J. Kim, List-coloring the square of a subcubic graph, J. Graph Theory 57 (2008) 65–87. doi:10.1002/jgt.20273
[17] J. Czap and S. Jendrol’, Facial packing edge-coloring of plane graphs, Discrete Appl. Math. 213 (2016) 71–75. doi:10.1016/j.dam.2016.05.010
[18] J. Czap, S. Jendroľ, P.Šugerek and J. Valiska, Facial packing vertex-coloring of subdivided plane graphs, Discrete Appl. Math. 257 (2019) 95–100. doi:10.1016/j.dam.2018.10.022
[19] F. Deng, Z. Shao and A. Vesel, On the packing coloring of base-3 Sierpiński and H graphs. arXiv:1909.08285 [math.CO] (18 Sep. 2018)
[20] D.D. Durgun and H.B. Ozen Dortok, Packing chromatic number of transformation graphs, Thermal Sci. 23 (2019) S1991–S1995. doi:10.2298/TSCI190720363D
[21] J. Ekstein, J. Fiala, P. Holub and B. Lidický, The packing chromatic number of the square lattice is at least 12. arXiv:1003.2291 [cs.DM] (11 Mar 2010)
[22] J. Ekstein, P. Holub and B. Lidický, Packing chromatic number of distance graphs, Discrete Appl. Math. 160 (2012) 518–524. doi:10.1016/j.dam.2011.11.022
[23] J. Ekstein, P. Holub and O. Togni, The packing coloring of distance graphs D (k, t), Discrete Appl. Math. 167 (2014) 100–106. doi:10.1016/j.dam.2013.10.036
[24] G. Fertin, E. Godard and A. Raspaud, Acyclic and k-distance coloring of the grid, Inform. Process. Lett. 87 (2003) 51–58. doi:10.1016/S0020-0190(03)00232-1
[25] J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) 771–778. doi:10.1016/j.dam.2008.09.001
[26] J. Fiala, S. Klavžar and B. Lidický, The packing chromatic number of infinite product graphs, European J. Combin. 30 (2009) 1101–1113. doi:10.1016/j.ejc.2008.09.014
[27] A. Finbow and D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. 158 (2010) 1224–1228. doi:10.1016/j.dam.2009.06.001
[28] J. Fresán-Figueroa, D. González-Moreno and M. Olsen, On the packing chromatic number of Moore graphs. arXiv:1909.11638 [math.CO] (25 Sep 2019)
[29] N. Gastineau, Dichotomies properties on computational complexity of S-packing coloring problems, Discrete Math. 338 (2015) 1029–1041. doi:10.1016/j.disc.2015.01.028
[30] N. Gastineau, P. Holub and O. Togni, On the packing chromatic number of subcubic outerplanar graphs, Discrete Appl. Math. 255 (2019) 209–221. doi:10.1016/j.dam.2018.07.034
[31] N. Gastineau, H. Kheddouci and O. Togni, Subdivision into i-packings and S-packing chromatic number of some lattices, Ars Math. Contemp. 9 (2015) 321–344. doi:10.26493/1855-3974.436.178
[32] N. Gastineau and O. Togni, S-packing colorings of cubic graphs, Discrete Math. 339 (2016) 2461–2470. doi:10.1016/j.disc.2016.04.017
[33] N. Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019) 63–75. doi:10.1016/j.dam.2018.12.035
[34] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B 16 (1974) 47–56. doi:10.1016/0095-8956(74)90094-X
[35] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33–49.
[36] W. Goddard and H. Xu, The S-packing chromatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 795–806. doi:10.7151/dmgt.1642
[37] W. Goddard and H. Xu, A note on S-packing colorings of lattices, Discrete Appl. Math. 166 (2014) 255–262. doi:10.1016/j.dam.2013.09.016
[38] J. Hagauer and S. Klavžar, On independence numbers of the Cartesian product of graphs, Ars Combin. 43 (1996) 149–157.
[39] A.M. Hinz, S. Klavžar and S.S. Zemljič, A survey and classification of Sierpiński-type graphs, Discrete Appl. Math. 217 (2017) 565–600. doi:10.1016/j.dam.2016.09.024
[40] P. Holub, M. Jakovac and S. Klavžar, S-packing chromatic vertex-critical graphs. arXiv:2001.09362v1 [math.CO] (28 Jan 2020)
[41] Y. Jacobs, E. Jonck and E.J. Joubert, A lower bound for the packing chromatic number of the Cartesian product of cycles, Cent. Eur. J. Math. 11 (2013) 1344–1357. doi:10.2478/S11533-013-0237-5
[42] M. Kim, B. Lidický, T. Masařík and F. Pfender, Notes on complexity of packing coloring, Inform. Process. Lett. 137 (2018) 6–10. doi:10.1016/j.ipl.2018.04.012
[43] S. Klavžar and U. Milutinović, Graphs S(n, k) and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47 (1997) 95–104. doi:10.1023/A:1022444205860
[44] S. Klavžar and D.F. Rall, Packing chromatic vertex-critical graphs, Discrete Math. Theor. Comput. Sci. 21(3) (2019) #8. doi:10.23638/DMTCS-21-3-8
[45] D. Korže and A. Vesel, On the packing chromatic number of square and hexagonal lattice, Ars Math. Contemp. 7 (2014) 13–22. doi:10.26493/1855-3974.255.88d
[46] D. Korže and A. Vesel, (d, n)-packing colorings of infinite lattices, Discrete Appl. Math. 237 (2018) 97–108. doi:10.1016/j.dam.2017.11.036
[47] D. Korže and A. Vesel, Packing coloring of generalized Sierpiński graphs, Discrete Math. Theor. Comput. Sci. 21(3) (2019) #7. doi:10.23638/DMTCS-21-3-7
[48] D. Korže, Ž. Markuš and A. Vesel, A heuristic approach for searching (d, n)-packing colorings of infinite lattices, Discrete Appl. Math. 257 (2019) 353–358. doi:10.1016/j.dam.2018.09.018
[49] F. Kramer and H. Kramer, A survey on the distance-colouring of graphs, Discrete Math. 308 (2008) 422–426. doi:10.1016/j.disc.2006.11.059
[50] D. Laïche, I. Bouchemakh and É. Sopena, Packing coloring of some undirected and oriented coronae graphs, Discuss. Math. Graph Theory 37 (2017) 665–690. doi:10.7151/dmgt.1963
[51] D. Laïche, I. Bouchemakh and É. Sopena, On the packing coloring of undirected and oriented generalized theta graphs, Australas. J. Combin. 66 (2016) 310–329.
[52] B. Laïche and É. Sopena, Packing colouring of some classes of cubic graphs, Australas. J. Combin. 72 (2018) 376–404.
[53] R. Lemdani, M. Abbas and J. Ferme, Packing chromatic numbers of finite super subdivisions of graphs, Filomat, to appear.
[54] R. Liu, X. Liu, M. Rolek and G. Yu, Packing (1, 1, 2, 2)-coloring of some subcubic graphs, Discrete Appl. Math. (2020), in press. doi:10.1016/j.dam.2020.03.015
[55] B. Martin, F. Raimondi, T. Chen and J. Martin, The packing chromatic number of the infinite square lattice is between 13 and 15, Discrete Appl. Math. 225 (2017) 136–142. doi:/10.1016/j.dam.2017.03.013
[56] G. Nasini, D. Severin and P. Torres, On the packing chromatic number on Hamming graphs and general graphs . arXiv:1510.05524 [cs.DM] (19 Oct 2015)
[57] K. Rajalakshmi and M. Venkatachalam, On packing coloring of double wheel graph families, Int. J. Pure Appl. Math. 119 (2018) 2389–2396.
[58] K. Rajalakshmi and M. Venkatachalam On packing coloring of helm related graphs, J. Discrete Math. Sci. Cryptogr. 22 (2019) 989–1005. doi:10.1080/09720529.2019.1640968
[59] S. Roy, Packing chromatic number of certain fan and wheel related graphs, AKCE Int. J. Graphs Comb. 14 (2017) 63–69. doi:10.1016/j.akcej.2016.11.001
[60] Z. Shao and A. Vesel, Modeling the packing coloring problem of graphs, Appl. Math. Model. 39 (2015) 3588–3595. doi:10.1016/j.apm.2014.11.060
[61] Z. Shao and A. Vesel, Corrigendum to ‘Modeling the packing coloring problem of graphs’ [Appl. Math. Model. 39 (2015) 3588–3595], Appl. Math. Model. 40 (2016) 1683. doi:10.1016/j.apm.2015.08.001
[62] C. Sloper, An eccentric coloring of trees, Australas. J. Combin. 29 (2004) 309–321.
[63] R. Soukal and P. Holub, A note on packing chromatic number of the square lattice, Electron. J. Combin. 17 (2010) #N17. doi:10.37236/466
[64] O. Togni, On packing colorings of distance graphs, Discrete Appl. Math. 167 (2014) 280–289. doi:10.1016/j.dam.2013.10.026
[65] P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Appl. Math. 190/191 (2015) 127–140. doi:10.1016/j.dam.2015.04.006
[66] V.G. Vizing, The Cartesian product of graphs, Vycisl. Sistemy 9 (1963) 30–43.
[67] A. William, S. Roy and I. Rajasingh, Packing chromatic number of cycle related graphs, Internat. J. Math. Soft Comput. 4 (2014) 27–33. doi:10.26708/IJMSC.2014.1.4.04
[68] A. William and S. Roy, Packing chromatic number of certain graphs, Int. J. Pure Appl. Math. 87 (2013) 731–739. doi:10.12732/ijpam.v87i6.1