Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a9, author = {F\"urst, Maximilian and Gentner, Michael and J\"ager, Simon and Rautenbach, Dieter and Henning, Michael A.}, title = {Equating \ensuremath{\kappa} {Maximum} {Degrees} in {Graphs} without {Short} {Cycles}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {841--853}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a9/} }
TY - JOUR AU - Fürst, Maximilian AU - Gentner, Michael AU - Jäger, Simon AU - Rautenbach, Dieter AU - Henning, Michael A. TI - Equating κ Maximum Degrees in Graphs without Short Cycles JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 841 EP - 853 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a9/ LA - en ID - DMGT_2020_40_3_a9 ER -
%0 Journal Article %A Fürst, Maximilian %A Gentner, Michael %A Jäger, Simon %A Rautenbach, Dieter %A Henning, Michael A. %T Equating κ Maximum Degrees in Graphs without Short Cycles %J Discussiones Mathematicae. Graph Theory %D 2020 %P 841-853 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a9/ %G en %F DMGT_2020_40_3_a9
Fürst, Maximilian; Gentner, Michael; Jäger, Simon; Rautenbach, Dieter; Henning, Michael A. Equating κ Maximum Degrees in Graphs without Short Cycles. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 841-853. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a9/
[1] M.O. Albertson and D.L. Boutin, Lower bounds for constant degree independent sets, Discrete Math. 127 (1994) 15–21. doi:10.1016/0012-365X(92)00463-2
[2] B. Bollobás and A.D. Scott, Independent sets and repeated degrees, Discrete Math. 170 (1997) 41–49. doi:10.1016/0012-365X(95)00355-Z
[3] Y. Caro, J. Lauri and C. Zarb, Equating two maximum degrees, manuscript. arXiv:1704.08472v1
[4] Y. Caro, A. Shapira and R. Yuster, Forcing k-repetitions in degree sequences, Electron. J. Combin. 21 (2014) #P24.
[5] Y. Caro and R. Yuster, Large induced subgraphs with equated maximum degree, Discrete Math. 310 (2010) 742–747. doi:10.1016/j.disc.2009.09.003
[6] Y. Caro and D.B. West, Repetition number of graphs, Electron. J. Combin. 16 (2009) #R7.
[7] M. Miller and J.Širáň, Moore graphs and beyond: A survey of the degree/diameter problem, Electron. J. Combin. 20 (2013) #DS14v2.