The Edit Distance Function of Some Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 807-821
Voir la notice de l'article provenant de la source Library of Science
The edit distance function of a hereditary property ℋ is the asymptotically largest edit distance between a graph of density p ∈ [0, 1] and ℋ. Denote by P_n and C_n the path graph of order n and the cycle graph of order n, respectively. Let C_2n^∗ be the cycle graph C_2n with a diagonal, and C_n be the graph with vertex set v_0, v_1, . . ., v_n−1 and E(C_n)=E(C_n)∪v_0v_2. Marchant and Thomason determined the edit distance function of C_6^∗. Peck studied the edit distance function of C_n, while Berikkyzy et al. studied the edit distance of powers of cycles. In this paper, by using the methods of Peck and Martin, we determine the edit distance function of C_8^∗, C_n and P_n, respectively.
Keywords:
edit distance, colored regularity graphs, hereditary property, clique spectrum
@article{DMGT_2020_40_3_a7,
author = {Hu, Yumei and Shi, Yongtang and Wei, Yarong},
title = {The {Edit} {Distance} {Function} of {Some} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {807--821},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a7/}
}
TY - JOUR AU - Hu, Yumei AU - Shi, Yongtang AU - Wei, Yarong TI - The Edit Distance Function of Some Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 807 EP - 821 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a7/ LA - en ID - DMGT_2020_40_3_a7 ER -
Hu, Yumei; Shi, Yongtang; Wei, Yarong. The Edit Distance Function of Some Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 807-821. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a7/