Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a5, author = {Yin, Jian-Hua and Li, Sha-Sha}, title = {On {Factorable} {Bigraphic} {Pairs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {787--793}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a5/} }
Yin, Jian-Hua; Li, Sha-Sha. On Factorable Bigraphic Pairs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 787-793. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a5/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).
[2] Y. Chen, A short proof of Kundu’s k-factor theorem, Discrete Math. 71 (1988) 177–179. doi:10.1016/0012-365X(88)90070-2
[3] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957) 1073–1082. doi:10.2140/pjm.1957.7.1073
[4] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973) 79–88. doi:10.1016/0012-365X(73)90037-X
[5] S. Kundu, The k-factor conjecture is true, Discrete Math. 6 (1973) 367–376. doi:10.1016/0012-365X(73)90068-X
[6] S. Kundu, Generalizations of the k-factor theorem, Discrete Math. 9 (1974) 173–179. doi:10.1016/0012-365X(74)90147-2
[7] A.R. Rao and S.B. Rao, On factorable degree sequences, J. Combin. Theory Ser. B 13 (1972) 185–191. doi:10.1016/0095-8956(72)90055-X
[8] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371–377. doi:10.4153/CJM-1957-044-3
[9] J.H. Yin, A characterization for a graphic sequence to be potentially Cr -graphic, Sci. China Math. 53 (2010) 2893–2905. doi:10.1007/s11425-010-3124-6