Extremal Graphs for a Bound on the Roman Domination Number
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 771-785.

Voir la notice de l'article provenant de la source Library of Science

A Roman dominating function on a graph G = (V, E) is a function f:V (G) → 0, 1, 2 such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value w(f) = Σu∈V(G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by γR(G). In 2009, Chambers, Kinnersley, Prince and West proved that for any graph G with n vertices and maximum degree Δ, γR(G) ≤ n + 1 − Δ. In this paper, we give a characterization of graphs attaining the previous bound including trees, regular and semiregular graphs. Moreover, we prove that the problem of deciding whether γR(G) = n + 1 − Δ is co-complete. Finally, we provide a characterization of extremal graphs of a Nordhaus–Gaddum bound for γR(G) + γR (Ḡ), where Ḡ is the complement graph of G.
Keywords: Roman domination, Roman domination number, Nordhaus-Gaddum inequalities
@article{DMGT_2020_40_3_a4,
     author = {Bouchou, Ahmed and Blidia, Mostafa and Chellali, Mustapha},
     title = {Extremal {Graphs} for a {Bound} on the {Roman} {Domination} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {771--785},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a4/}
}
TY  - JOUR
AU  - Bouchou, Ahmed
AU  - Blidia, Mostafa
AU  - Chellali, Mustapha
TI  - Extremal Graphs for a Bound on the Roman Domination Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 771
EP  - 785
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a4/
LA  - en
ID  - DMGT_2020_40_3_a4
ER  - 
%0 Journal Article
%A Bouchou, Ahmed
%A Blidia, Mostafa
%A Chellali, Mustapha
%T Extremal Graphs for a Bound on the Roman Domination Number
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 771-785
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a4/
%G en
%F DMGT_2020_40_3_a4
Bouchou, Ahmed; Blidia, Mostafa; Chellali, Mustapha. Extremal Graphs for a Bound on the Roman Domination Number. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 771-785. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a4/

[1] S. Bermudo, H. Fernau and J. Sigarreta, The differential and the Roman domination number of a graph, Appl. Anal. Discrete Math. 8 (2014) 155–171. doi:10.2298/AADM140210003B

[2] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575–1586. doi:10.1137/070699688

[3] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. doi:10.1016/j.disc.2003.06.004

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, New York, 1979).

[5] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749–762. doi:10.1002/jgt.3190130610

[6] B.P. Mobaraky and S.M. Sheikholeslami, Bounds on Roman domination numbers of graphs, Mat. Vesnik 60 (2008) 247–253.

[7] C.S. ReVelle and K.E. Rosing, Defendens Imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. doi:10.1080/00029890.2000.12005243

[8] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136–138. doi:10.1038/scientificamerican1299-136