On Some Properties of Antipodal Partial Cubes
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 755-770

Voir la notice de l'article provenant de la source Library of Science

We prove that an antipodal bipartite graph is a partial cube if and only it is interval monotone. Several characterizations of the principal cycles of an antipodal partial cube are given. We also prove that an antipodal partial cube G is a prism over an even cycle if and only if its order is equal to 4(diam(G) − 1), and that the girth of an antipodal partial cube is less than its diameter whenever it is not a cycle and its diameter is at least equal to 6.
Keywords: antipodal graph, partial cube, interval monotony, girth, diameter
@article{DMGT_2020_40_3_a3,
     author = {Polat, Norbert},
     title = {On {Some} {Properties} of {Antipodal} {Partial} {Cubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {755--770},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a3/}
}
TY  - JOUR
AU  - Polat, Norbert
TI  - On Some Properties of Antipodal Partial Cubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 755
EP  - 770
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a3/
LA  - en
ID  - DMGT_2020_40_3_a3
ER  - 
%0 Journal Article
%A Polat, Norbert
%T On Some Properties of Antipodal Partial Cubes
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 755-770
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a3/
%G en
%F DMGT_2020_40_3_a3
Polat, Norbert. On Some Properties of Antipodal Partial Cubes. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 755-770. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a3/