Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a11, author = {Alikhani, Saeid and Klav\v{z}ar, Sandi and Lehner, Florian and Soltani, Samaneh}, title = {Trees with {Distinguishing} {Index} {Equal} {Distinguishing} {Number} {Plus} {One}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {875--884}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a11/} }
TY - JOUR AU - Alikhani, Saeid AU - Klavžar, Sandi AU - Lehner, Florian AU - Soltani, Samaneh TI - Trees with Distinguishing Index Equal Distinguishing Number Plus One JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 875 EP - 884 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a11/ LA - en ID - DMGT_2020_40_3_a11 ER -
%0 Journal Article %A Alikhani, Saeid %A Klavžar, Sandi %A Lehner, Florian %A Soltani, Samaneh %T Trees with Distinguishing Index Equal Distinguishing Number Plus One %J Discussiones Mathematicae. Graph Theory %D 2020 %P 875-884 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a11/ %G en %F DMGT_2020_40_3_a11
Alikhani, Saeid; Klavžar, Sandi; Lehner, Florian; Soltani, Samaneh. Trees with Distinguishing Index Equal Distinguishing Number Plus One. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 875-884. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a11/
[1] M.O. Albertson and K.L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) #R18.
[2] S. Alikhani and S. Soltani, Distinguishing number and distinguishing index of certain graphs, Filomat 31 (2017) 4393–4404. doi:10.2298/FIL1714393A
[3] V. Arvind, C. Cheng and N. Devanur, On computing the distinguishing numbers of planar graphs and beyond: a counting approach, SIAM J. Discrete Math. 22 (2008) 1297–1324. doi:10.1137/07068686X
[4] V. Arvind and N. Devanur, Symmetry breaking in trees and planar graphs by vertex coloring, in: Proceedings of the 8th Nordic Combinatorial Conference (Aalborg University, Aalborg, Denmark, 2004).
[5] M. Cavers and K. Seyffarth, Graphs with large distinguishing chromatic number, Electron. J. Combin. 20 (2013) #P19.
[6] M. Chan, The distinguishing number of the augmented cube and hypercube powers, Discrete Math. 308 (2008) 2330–2336. doi:10.1016/j.disc.2006.09.056
[7] C. Cheng, On computing the distinguishing numbers of trees and forests, Electron. J. Combin. 13 (2006) #R11.
[8] K.L. Collins and A.N. Trenk, The distinguishing chromatic number, Electron. J. Combin. 13 (2016) #R16.
[9] E. Estaji, W. Imrich, R. Kalinowski, M. Pilśniak and T. Tucker, Distinguishing Cartesian products of countable graphs, Discuss. Math. Graph Theory 37 (2017) 155–164. doi:10.7151/dmgt.1902
[10] S. Gravier, K. Meslem, S. Schmidt and S. Slimani, A new game invariant of graphs: the game distinguishing number, Discrete Math. Theor. Comput. Sci. 19 (1) (2017) Paper No. 2. doi:10.23638/DMTCS-19-1-2
[11] P. Immel and P.S. Wenger, The list distinguishing number equals the distinguishing number for interval graphs, Discuss. Math. Graph Theory 37 (2017) 165–174. doi:10.7151/dmgt.1927
[12] W. Imrich, R. Kalinowski, M. Pilśniak and M.H. Shekarriz, Bounds for distinguishing invariants of infinite graphs, Electron. J. Combin. 24 (2017) #P3.6.
[13] R. Kalinowski and M. Pilśniak, Distinguishing graphs by edge colourings, European J. Combin. 45 (2015) 124–131. doi:10.1016/j.ejc.2014.11.003
[14] S. Klavžar, T.-L. Wong and X. Zhu, Distinguishing labelings of group action on vector spaces and graphs, J. Algebra 303 (2006) 626–641. doi:10.1016/j.jalgebra.2006.01.045
[15] D. Kim, Y.S. Kwon and J. Lee, The distinguishing numbers of Merged Johnson graphs, Bull. Korean Math. Soc. 52 (2015) 395–408. doi:10.4134/BKMS.2015.52.2.395
[16] C. Laflamme, L. Nguyen Van Thé and N. Sauer, Distinguishing number of countable homogeneous relational structures, Electron. J. Combin. 17 (2010) #R20.
[17] F. Lehner, Distinguishing graphs with intermediate growth, Combinatorica 36 (2016) 333–347. doi:10.1007/s00493-015-3071-5
[18] F. Lehner, Breaking graph symmetries by edge colourings, J. Combin. Theory Ser. B 127 (2017) 205–214. doi:10.1016/j.jctb.2017.06.001
[19] F. Lehner and S.M. Smith, On symmetries of edge and vertex colourings of graphs, preprint.
[20] R. Schmidt, Ein Ordnungsbegriff für Graphen ohne unendliche Wege mit einer Anwendung auf n-fach zusammenhaengende Graphen, Arch. Math. 40 (1983) 283–288. doi:10.1007/BF01192782
[21] S.M. Smith and M.E. Watkins, Bounding the distinguishing number of infinite graphs and permutation groups, Electron. J. Combin. 21 (2014) #P3.40.
[22] M. Watkins and X. Zhou, Distinguishability of locally finite trees, Electron. J. Combin. 14 (2007) #R29.
[23] T.-L. Wong and X. Zhu, Distinguishing labeling of group actions, Discrete Math. 309 (2009) 1760–1765. doi:10.1016/j.disc.2008.02.022