Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a10, author = {Brandt, Axel and Jahanbekam, Sogol and White, Jennifer}, title = {Additive {List} {Coloring} of {Planar} {Graphs} with {Given} {Girth}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {855--873}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a10/} }
TY - JOUR AU - Brandt, Axel AU - Jahanbekam, Sogol AU - White, Jennifer TI - Additive List Coloring of Planar Graphs with Given Girth JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 855 EP - 873 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a10/ LA - en ID - DMGT_2020_40_3_a10 ER -
%0 Journal Article %A Brandt, Axel %A Jahanbekam, Sogol %A White, Jennifer %T Additive List Coloring of Planar Graphs with Given Girth %J Discussiones Mathematicae. Graph Theory %D 2020 %P 855-873 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a10/ %G en %F DMGT_2020_40_3_a10
Brandt, Axel; Jahanbekam, Sogol; White, Jennifer. Additive List Coloring of Planar Graphs with Given Girth. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 855-873. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a10/
[1] A. Ahadi, A. Dehghan, M. Kazemi and E. Mollaahmadi, Computation of lucky number of planar graphs is NP-hard, Inform. Process. Lett. 112 (2012) 109–112. doi:10.1016/j.ipl.2011.11.002
[2] A. Ahadi and A. Dehghan, The inapproximability for the (0, 1)-additive number, Discrete Math. Theor. Comput. Sci. 17 (2016) 217–226.
[3] S. Akbari, M. Ghanbari, R. Manaviyat and S. Zare, On the lucky choice number of graphs, Graphs Combin. 29 (2013) 157–163. doi:10.1007/s00373-011-1112-4
[4] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999) 7–29. doi:10.1017/S0963548398003411
[5] M. Axenovich, J. Harant, J. Przyby lo, R. Soták, M. Voigt and J. Weidelich, A note on adjacent vertex distinguishing colorings of graphs, Discrete Appl. Math. 205 (2016) 1–7. doi:10.1016/j.dam.2015.12.005
[6] T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki and W. Żelazny, Additive coloring of planar graphs, Graphs Combin. 30 (2014) 1087–1098. doi:10.1007/s00373-013-1331-y
[7] A. Brandt, M. Ferrara, M. Kumbhat, S. Loeb, D. Stolee and M. Yancey, I,F-partitions of sparse graphs, European J. Combin. 57 (2016) 1–12. doi:10.1016/j.ejc.2016.03.003
[8] Y. Bu, D. Cranston, M. Montassier, A. Raspaud and W. Wang, Star coloring of sparse graphs, J. Graph Theory 62 (2009) 201–219. doi:10.1002/jgt.20392
[9] G. Chartrand, F. Okamoto and P. Zhang, The sigma chromatic number of a graph, Graphs Combin. 26 (2010) 755–773. doi:10.1007/s00373-010-0952-7
[10] D.W. Cranston and D.B. West, An introduction to the discharging method via graph coloring, Discrete Math. 340 (2017) 766–793. doi:10.1016/j.disc.2016.11.022
[11] S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009) 1078–1081. doi:10.1016/j.ipl.2009.05.011
[12] A. Dehghan, M. Sadeghi and A. Ahadi, The complexity of the sigma chromatic number of cubic graphs, (2014). arXiv:math.CO/1403.6288v1
[13] A. Dehghan, M. Sadeghi and A. Ahadi, Algorithmic complexity of proper labeling problems, Theoret. Comput. Sci. 495 (2013) 25–36. doi:10.1016/j.tcs.2013.05.027
[14] H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 8 (1958/1959) 109–120.
[15] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) 347–349. doi:10.1016/j.jctb.2009.06.002
[16] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151–157. doi:10.1016/j.jctb.2003.12.001
[17] B. Seamone, The 1-2-3 conjecture and related problems: a survey (2012). arXiv:math.CO/1211.5122
[18] B. Seamone, Derived Colourings of Graphs (PhD Thesis, Carleton University, 2012).
[19] R. Steinberg and C.A. Tovey, Planar Ramsey numbers, J. Combin. Theory Ser. B 59 (1993) 288–296. doi:10.1006/jctb.1993.1070
[20] C. Thomassen, A short list color proof of Grötzsch’s theorem, J. Combin. Theory Ser. B 88 (2003) 189–192. doi:10.1016/S0095-8956(03)00029-7
[21] D.B. West, Introduction to Graph Theory (Prentice Hall, Inc., Upper Saddle River, NJ, 1996).