2-Spanning Cyclability Problems of Some Generalized Petersen Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 713-731

Voir la notice de l'article provenant de la source Library of Science

A graph G is called r-spanning cyclable if for every r distinct vertices v1, v2, . . ., vr of G, there exists r cycles C1, C2, . . ., Cr in G such that vi is on Ci for every i, and every vertex of G is on exactly one cycle Ci. In this paper, we consider the 2-spanning cyclable problem for the generalized Petersen graph GP (n, k). We solved the problem for k ≤ 4. In addition, we provide an additional observation for general k as well as stating a conjecture.
Keywords: Petersen graph, spanning cyclable
@article{DMGT_2020_40_3_a1,
     author = {Yang, Meng-Chien and Hsu, Lih-Hsing and Hung, Chun-Nan and Cheng, Eddie},
     title = {2-Spanning {Cyclability} {Problems} of {Some} {Generalized} {Petersen} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {713--731},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/}
}
TY  - JOUR
AU  - Yang, Meng-Chien
AU  - Hsu, Lih-Hsing
AU  - Hung, Chun-Nan
AU  - Cheng, Eddie
TI  - 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 713
EP  - 731
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/
LA  - en
ID  - DMGT_2020_40_3_a1
ER  - 
%0 Journal Article
%A Yang, Meng-Chien
%A Hsu, Lih-Hsing
%A Hung, Chun-Nan
%A Cheng, Eddie
%T 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 713-731
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/
%G en
%F DMGT_2020_40_3_a1
Yang, Meng-Chien; Hsu, Lih-Hsing; Hung, Chun-Nan; Cheng, Eddie. 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 713-731. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/