2-Spanning Cyclability Problems of Some Generalized Petersen Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 713-731
Voir la notice de l'article provenant de la source Library of Science
A graph G is called r-spanning cyclable if for every r distinct vertices v1, v2, . . ., vr of G, there exists r cycles C1, C2, . . ., Cr in G such that vi is on Ci for every i, and every vertex of G is on exactly one cycle Ci. In this paper, we consider the 2-spanning cyclable problem for the generalized Petersen graph GP (n, k). We solved the problem for k ≤ 4. In addition, we provide an additional observation for general k as well as stating a conjecture.
Keywords:
Petersen graph, spanning cyclable
@article{DMGT_2020_40_3_a1,
author = {Yang, Meng-Chien and Hsu, Lih-Hsing and Hung, Chun-Nan and Cheng, Eddie},
title = {2-Spanning {Cyclability} {Problems} of {Some} {Generalized} {Petersen} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {713--731},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/}
}
TY - JOUR AU - Yang, Meng-Chien AU - Hsu, Lih-Hsing AU - Hung, Chun-Nan AU - Cheng, Eddie TI - 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 713 EP - 731 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/ LA - en ID - DMGT_2020_40_3_a1 ER -
%0 Journal Article %A Yang, Meng-Chien %A Hsu, Lih-Hsing %A Hung, Chun-Nan %A Cheng, Eddie %T 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 713-731 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/ %G en %F DMGT_2020_40_3_a1
Yang, Meng-Chien; Hsu, Lih-Hsing; Hung, Chun-Nan; Cheng, Eddie. 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 713-731. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/