Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a1, author = {Yang, Meng-Chien and Hsu, Lih-Hsing and Hung, Chun-Nan and Cheng, Eddie}, title = {2-Spanning {Cyclability} {Problems} of {Some} {Generalized} {Petersen} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {713--731}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/} }
TY - JOUR AU - Yang, Meng-Chien AU - Hsu, Lih-Hsing AU - Hung, Chun-Nan AU - Cheng, Eddie TI - 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 713 EP - 731 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/ LA - en ID - DMGT_2020_40_3_a1 ER -
%0 Journal Article %A Yang, Meng-Chien %A Hsu, Lih-Hsing %A Hung, Chun-Nan %A Cheng, Eddie %T 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 713-731 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/ %G en %F DMGT_2020_40_3_a1
Yang, Meng-Chien; Hsu, Lih-Hsing; Hung, Chun-Nan; Cheng, Eddie. 2-Spanning Cyclability Problems of Some Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 713-731. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a1/
[1] M. Albert, R.E.L. Aldred and D. Holton, On 3*-connected graphs, Australas. J. Combin. 24 (2001) 193–207.
[2] B. Alspach, The classification of Hamiltonian generalized Petersen graphs, J. Combin. Theory Ser. B 34 (1983) 293–312. doi:10.1016/0095-8956(83)90042-4
[3] B. Alspach, D. Bryant and D. Dyer, Paley graphs have Hamilton decompositions, Discrete Math. 312 (2012) 113–118. doi:10.1016/j.disc.2011.06.003
[4] B. Alspach and J. Liu, On the Hamilton connectivity of generalized Petersen graphs, Discrete Math. 309 (2009) 5461–5473. doi:10.1016/j.disc.2008.12.016
[5] M. Behzad, P. Hatami and E.S. Mahmoodian, Minimum vertex covers in the generalized Petersen graphs P(n, 2), Bull. Inst. Combin. Appl. 56 (2009) 98–102.
[6] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5
[7] J.A. Bondy, Variations on the Hamiltonian theme, Canad. Math. Bull. 15 (1972) 57–62. doi:10.4153/CMB-1972-012-3
[8] M.Y. Chan and S.J. Lee, On the existence of Hamiltonian circuits in faulty hyper-cubes, SIAM J. Discrete Math. 4 (1991) 511–527. doi:10.1137/0404045
[9] R.J. Faundree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 73–87. doi:10.1016/S0012-365X(00)00202-8
[10] J.R. Faundree, R.J. Gould, A.V. Kostochka, L. Lesniak, I. Schiermeyer and A. Saito, Degree conditions for k-ordered Hamiltonian graphs, J. Graph Theory 42 (2003) 199–210. doi:10.1002/jgt.10084
[11] S. Fujita and T. Araki, Three-round adaptive diagnosis in binary n-cubes, Lecture Notes in Comput. Sci. 3341 (2004) 442–451. doi:10.1007/978-3-540-30551-4_39
[12] S.L. Hakimi and E.F. Schmeichel, On the number of cycles of length k in a maximal planar graph, J. Graph Theory 3 (1979) 69–86. doi:10.1002/jgt.3190030108
[13] C.-N. Hung, D. Lu, R. Jia, C.-K. Lin, L. Lipták, E. Cheng, J.J.M. Tan and L.-H. Hsu, 4 -ordered Hamiltonian problems for the generalized Petersen graph GP (n, 4), Math. Comput. Modelling 57 (2013) 595–601. doi:10.1016/j.mcm.2012.07.022
[14] S.Y. Hsieh, G.H. Chen and C.W. Ho, Fault-free Hamiltonian cycles in faulty arrangement graphs, IEEE Trans. Parallel Distributed Systems 10 (1999) 223–237. doi:10.1109/71.755822
[15] L.-H. Hsu and C.-K. Lin, Graph Theory and Interconnection Networks (CRC Press, 2009).
[16] L.-H. Hsu, J.M. Tan, E. Cheng, L. Lipták, C.K. Lin and M. Tsai, Solution to an open problem of 4 -ordered Hamiltonian graphs, Discrete Math. 312 (2012) 2356–2370. doi:10.1016/j.disc.2012.04.003
[17] M. Lewinter and W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Comput. Math. Appl. 34 (1997) 99–104. doi:10.1016/S0898-1221(97)00223-X
[18] R. Li, S. Li and Y. Guo, Degree conditions on distance 2 vertices that imply k-ordered Hamiltonian, Discrete Appl. Math. 158 (2010) 331–339. doi:10.1016/j.dam.2009.05.005
[19] C.-K. Lin, H.-M. Huang and L.-H. Hsu, The super connectivity of the pancake graphs and super laceability of the star graphs, Theoret. Comput. Sci. 339 (2005) 257–271. doi:10.1016/j.tcs.2005.02.007
[20] C.-K. Lin, H.-M. Huang, J.J.M. Tan and L.-H. Hsu, On spanning connected graphs, Discrete Math. 308 (2008) 1330–1333. doi:10.1016/j.disc.2007.03.072
[21] J. Liu, Hamiltonian decompositions of Cayley graphs on Abelian groups, Discrete Math. 131 (1994) 163–171. doi:10.1016/0012-365X(94)90381-6
[22] J. Liu, Hamiltonian decompositions of Cayley graphs on abelian groups of even order, J. Combin. Theory Ser. B 88 (2003) 305–321. doi:10.1016/S0095-8956(03)00033-9
[23] K. Mészáros, On 3 -regular 4 -ordered graphs, Discrete Math. 308 (2008) 2149–2155. doi:10.1016/j.disc.2007.04.061
[24] L. Ng and M. Schultz, k-ordered Hamiltonian graphs, J. Graph Theory 24 (1997) 45–57. doi:10.1002/(SICI)1097-0118(199701)24:1〈45::AID-JGT6〉3.0.CO;2-J
[25] G.N. Robertson, Graphs Minimal under Girth, Valency and Connectivity Constraints, PhD Thesis (University of Waterloo, 1968).
[26] D.R. Silaban, A. Parestu, B.N. Herawati, K.A. Sugeng and Slamin, Vertex-magic total labelings of union of generalized Petersen graphs and union of special circulant graphs, J. Combin. Math. Combin. Comput. 71 (2009) 201–207.
[27] C. Tong, X. Lin, Y. Yang and M. Luo, 2 -rainbow domination of generalized Petersen graphs P(n, 2), Discrete Appl. Math. 157 (2009) 1932–1937. doi:10.1016/j.dam.2009.01.020
[28] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152–164. doi:10.1016/S0021-9800(69)80116-X
[29] G. Xu, 2 -rainbow domination in generalized Petersen graphs P(n, 3), Discrete Appl. Math. 157 (2009) 2570–2573. doi:10.1016/j.dam.2009.03.016