Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_3_a0, author = {Zhao, Min and Shan, Erfang and Kang, Liying}, title = {Power {Domination} in the {Generalized} {Petersen} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {695--712}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a0/} }
TY - JOUR AU - Zhao, Min AU - Shan, Erfang AU - Kang, Liying TI - Power Domination in the Generalized Petersen Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 695 EP - 712 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a0/ LA - en ID - DMGT_2020_40_3_a0 ER -
Zhao, Min; Shan, Erfang; Kang, Liying. Power Domination in the Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 695-712. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a0/
[1] R. Barrera and D. Ferrero, Power domination in cylinders, tori, and generalized Petersen graphs, Networks 58 (2011) 43–49. doi:10.1002/net.20413
[2] A. Behzad, M. Behzad and C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Math. 308 (2008) 603–610. doi:10.1016/j.disc.2007.03.024
[3] D.J. Brueni and L.S. Heath, The PMU placement problem, SIAM J. Discrete Math. 19 (2005) 744–761. doi:10.1137/S0895480103432556
[4] P. Dorbec, M. Mollard, S. Klavžar and S. Špacapan, Power domination in product graphs, SIAM J. Discrete Math. 22 (2008) 554–567. doi:10.1137/060661879
[5] J. Fox, R. Gera and P. Stǎnicǎ, The independence number for the generalized Petersen graphs, Ars Combin. 103 (2012) 439–451.
[6] J. Guo, R. Niedermeier and D. Raible, Improved algorithms and complexity results for power domination in graphs, Lecture Notes in Comput. Sci. 3623 (2005) 172–184. doi:10.1007/11537311_16
[7] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, and M.A. Henning, Domination in graphs applied to electric power networks, SIAM J. Discrete Math. 15 (2002) 519–529. doi:10.1137/S0895480100375831
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[9] W.K. Hon, C.S. Liu, S.L. Peng and C.Y. Tang, Power domination on block-cactus graphs, in: The 24th Workshop on Combinatorial Mathematics and Computation Theory (2007) 280–284.
[10] C.S. Liao and D.T. Lee, Power domination problem in graphs, Lecture Notes in Comput. Sci. 3595 (2005) 818–828. doi:10.1007/11533719_83
[11] C.S. Liao and D.T. Lee, Power domination in circular-arc graphs, Algorithmica 65 (2013) 443–466. doi:10.1007/s00453-011-9599-x
[12] K.J. Pai, J.M. Chang and Y.L. Wang, A simple algorithm for solving the power domination problem on grid graphs, in: The 24th Workshop on Combinatorial Mathematics and Computation Theory (2007) 256–260.
[13] Y.L. Wang and G.S. Huang, An Algorithm for Solving the Power Domination Problem on Honeycomb Meshes (Master Thesis, Department of Computer Science and Information Engineering, National Chi Nan University, 2009).
[14] H.L. Wang, X.R. Xu, Y.S. Yang and K. Lü, On the distance pair domination of generalized Petersen graphs P (n, 1) and P (n, 2), J. Comb. Optim. 21 (2011) 481–496. doi:10.1007/s10878-009-9266-1
[15] G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci. 359 (2006) 299–305. doi:10.1016/j.tcs.2006.04.011
[16] G. Xu and L. Kang, On the power domination number of the generalized Petersen graphs, J. Comb. Optim. 22 (2011) 282–291. doi:10.1007/s10878-010-9293-y
[17] H. Yan, L. Kang and G. Xu, The exact domintion number of the generalized Petersen graphs, Discrete Math. 309 (2009) 2596–2607. doi:10.1016/j.disc.2008.04.026
[18] B. Zelinka, Domination in generalized Petersen graphs, Czechoslovak Math. J. 52 (2002) 11–16. doi:10.1023/A:1021759001873
[19] M. Zhao, L. Kang and G.J. Chang, Power domination in graphs, Discrete Math. 306 (2006) 1812–1816. doi:10.1016/j.disc.2006.03.037