Power Domination in the Generalized Petersen Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 695-712
Voir la notice de l'article provenant de la source Library of Science
The problem of monitoring an electric power system by placing as few measurement devices in the system can be formulated as a power dominating set problem in graph theory. The power domination number of a graph is the minimum cardinality of a power dominating set. Xu and Kang [On the power domination number of the generalized Petersen graphs, J. Comb. Optim. 22 (2011) 282–291] study the exact power domination number for the generalized Petersen graph P (3k, k), and propose the following problem: determine the power domination number for the generalized Petersen graph P (4k, k) or P (ck, k). In this paper we give the power domination number for P (4k, k) and present a sharp upper bound on the power domination number for the generalized Petersen graph P (ck, k).
Keywords:
power domination, domination, generalized Petersen graph, electric power system
@article{DMGT_2020_40_3_a0,
author = {Zhao, Min and Shan, Erfang and Kang, Liying},
title = {Power {Domination} in the {Generalized} {Petersen} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {695--712},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a0/}
}
TY - JOUR AU - Zhao, Min AU - Shan, Erfang AU - Kang, Liying TI - Power Domination in the Generalized Petersen Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 695 EP - 712 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a0/ LA - en ID - DMGT_2020_40_3_a0 ER -
Zhao, Min; Shan, Erfang; Kang, Liying. Power Domination in the Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 3, pp. 695-712. http://geodesic.mathdoc.fr/item/DMGT_2020_40_3_a0/