The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 525-532

Voir la notice de l'article provenant de la source Library of Science

Let A be a real symmetric matrix. If after we delete a row and a column of the same index, the nullity increases by one, we call that index a P-vertex of A. When A is an n × n singular acyclic matrix, it is known that the maximum number of P-vertices is n − 2. If T is the underlying tree of A, we will show that for any integer number k ∈ 0, 1, . . ., n − 2, there is a (singular) matrix whose graph is T and with k P-vertices. We will provide illustrative examples.
Keywords: trees, acyclic matrices, singular, multiplicity of eigenvalues, P-set, P-vertices
@article{DMGT_2020_40_2_a9,
     author = {Du, Zhibin and da Fonseca, Carlos M.},
     title = {The {Number} of {P-Vertices} of {Singular} {Acyclic} {Matrices:} {An} {Inverse} {Problem}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {525--532},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/}
}
TY  - JOUR
AU  - Du, Zhibin
AU  - da Fonseca, Carlos M.
TI  - The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 525
EP  - 532
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/
LA  - en
ID  - DMGT_2020_40_2_a9
ER  - 
%0 Journal Article
%A Du, Zhibin
%A da Fonseca, Carlos M.
%T The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 525-532
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/
%G en
%F DMGT_2020_40_2_a9
Du, Zhibin; da Fonseca, Carlos M. The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 525-532. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/