The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 525-532.

Voir la notice de l'article provenant de la source Library of Science

Let A be a real symmetric matrix. If after we delete a row and a column of the same index, the nullity increases by one, we call that index a P-vertex of A. When A is an n × n singular acyclic matrix, it is known that the maximum number of P-vertices is n − 2. If T is the underlying tree of A, we will show that for any integer number k ∈ 0, 1, . . ., n − 2, there is a (singular) matrix whose graph is T and with k P-vertices. We will provide illustrative examples.
Keywords: trees, acyclic matrices, singular, multiplicity of eigenvalues, P-set, P-vertices
@article{DMGT_2020_40_2_a9,
     author = {Du, Zhibin and da Fonseca, Carlos M.},
     title = {The {Number} of {P-Vertices} of {Singular} {Acyclic} {Matrices:} {An} {Inverse} {Problem}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {525--532},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/}
}
TY  - JOUR
AU  - Du, Zhibin
AU  - da Fonseca, Carlos M.
TI  - The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 525
EP  - 532
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/
LA  - en
ID  - DMGT_2020_40_2_a9
ER  - 
%0 Journal Article
%A Du, Zhibin
%A da Fonseca, Carlos M.
%T The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 525-532
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/
%G en
%F DMGT_2020_40_2_a9
Du, Zhibin; da Fonseca, Carlos M. The Number of P-Vertices of Singular Acyclic Matrices: An Inverse Problem. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 525-532. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a9/

[1] M. Anđelić, A. Erić and C.M. da Fonseca, Nonsingular acyclic matrices with full number of P-vertices, Linear Multilinear Algebra 61 (2013) 49–57. doi:10.1080/03081087.2012.661425

[2] M. Anđelić, C.M. da Fonseca and R. Mamede, On the number of P-vertices of some graphs, Linear Algebra Appl. 434 (2011) 514–525. doi:10.1016/j.laa.2010.09.017

[3] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, in: London Math. Soc. Stud. Texts 75 (Cambridge University Press, Cambridge, 2010).

[4] Z. Du, The real symmetric matrices with a P-set of maximum size and their associated graphs, J. South China Normal Univ. Natur. Sci. Ed. 48 (2016) 119–122.

[5] Z. Du and C.M. da Fonseca, On the continuity of the maximum size of P-sets of acyclic matrices, Discrete Math. 342 (2019) 2278–2282. doi:10.1016/j.disc.2019.04.025

[6] Z. Du and C.M. da Fonseca, The number of P-vertices for acyclic matrices of maximum nullity, Discrete Appl. Math. 269 (2019) 211–219. doi:10.1016/j.dam.2019.06.016

[7] Z. Du and C.M. da Fonseca, The real symmetric matrices of odd order with a P-set of maximum size, Czechoslovak Math. J. 66 (2016) 1007–1026. doi:10.1007/s10587-016-0306-6

[8] Z. Du and C.M. da Fonseca, The singular acyclic matrices of even order with a P-set of maximum size, Filomat 30 (2016) 3403–3409. doi:10.2298/FIL1613403D

[9] Z. Du and C.M. da Fonseca, The acyclic matrices with a P-set of maximum size, Linear Algebra Appl. 468 (2015) 27–37. doi:10.1016/j.laa.2013.10.042

[10] Z. Du and C.M. da Fonseca, Nonsingular acyclic matrices with an extremal number of P-vertices, Linear Algebra Appl. 442 (2014) 2–19. doi:10.1016/j.laa.2013.01.010

[11] Z. Du and C.M. da Fonseca, The singular acyclic matrices with maximal number of P-vertices, Linear Algebra Appl. 438 (2013) 2274–2279. doi:10.1016/j.laa.2012.10.023

[12] A. Erić and C.M. da Fonseca, The maximum number of P-vertices of some nonsingular double star matrices, Discrete Math. 313 (2013) 2192–2194. doi:10.1016/j.disc.2013.05.018

[13] C.R. Johnson, A. Leal Duarte and C.M. Saiago, The Parter-Wiener theorem: Refinement and generalization, SIAM J. Matrix Anal. Appl. 25 (2003) 352–361. doi:10.1137/S0895479801393320

[14] C.R. Johnson and B.D. Sutton, Hermitian matrices, eigenvalue multiplicities, and eigenvector components, SIAM J. Matrix Anal. Appl. 26 (2004) 390–399. doi:10.1137/S0895479802413649

[15] I.-J. Kim and B.L. Shader, Non-singular acyclic matrices, Linear Multilinear Algebra 57 (2009) 399–407. doi:/10.1080/03081080701823286

[16] S. Parter, On the eigenvalues and eigenvectors of a class of matrices, J. Soc. Indust. Appl. Math. 8 (1960) 376–388. doi:10.1137/0108024