Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a8, author = {Dadedzi, Kenneth and Misanantenaina, Valisoa Razanajatovo and Wagner, Stephan}, title = {On the {Distance} {Spectral} {Radius} of {Trees} with {Given} {Degree} {Sequence}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {495--524}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a8/} }
TY - JOUR AU - Dadedzi, Kenneth AU - Misanantenaina, Valisoa Razanajatovo AU - Wagner, Stephan TI - On the Distance Spectral Radius of Trees with Given Degree Sequence JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 495 EP - 524 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a8/ LA - en ID - DMGT_2020_40_2_a8 ER -
%0 Journal Article %A Dadedzi, Kenneth %A Misanantenaina, Valisoa Razanajatovo %A Wagner, Stephan %T On the Distance Spectral Radius of Trees with Given Degree Sequence %J Discussiones Mathematicae. Graph Theory %D 2020 %P 495-524 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a8/ %G en %F DMGT_2020_40_2_a8
Dadedzi, Kenneth; Misanantenaina, Valisoa Razanajatovo; Wagner, Stephan. On the Distance Spectral Radius of Trees with Given Degree Sequence. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 495-524. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a8/
[1] A.T. Balaban, D. Mills, O. Ivanciuc and S.C. Basak, Reverse Wiener indices, Croat. Chem. Acta 73 (2000) 923–941.
[2] R.B. Bapat, Determinant of the distance matrix of a tree with matrix weights, Linear Algebra Appl. 416 (2006) 2–7. doi:10.1016/j.laa.2005.02.022
[3] R.B. Bapat, Graphs and Matrices (Springer, 2010). doi:10.1007/978-1-84882-981-7
[4] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193–209. doi:10.1016/j.laa.2004.05.011
[5] T. Bıyıkoğlu and J. Leydold, Graphs with given degree sequence and maximal spectral radius, Electron. J. Combin. 15 (2008) #R119.
[6] S.S. Bose, M. Nath and S. Paul, Distance spectral radius of graphs with r pendent vertices, Linear Algebra Appl. 435 (2011) 2828–2836. doi:10.1016/j.laa.2011.04.041
[7] S.S. Bose, M. Nath and S. Paul, On the maximal distance spectral radius of graphs without a pendent vertex, Linear Algebra Appl. 438 (2013) 4260–4278. doi:10.1016/j.laa.2013.01.019
[8] S.S. Bose, M. Nath and D. Sarma, Maximal distance spectral radius of trees, Discrete Math. Algorithms Appl. 11 (2019) 1950025. doi:10.1142/S1793830919500253
[9] E. Çela, N.S. Schmuck, S. Wimer and G.J. Woeginger, The Wiener maximum quadratic assignment problem, Discrete Optim. 8 (2011) 411–416. doi:10.1016/j.disopt.2011.02.002
[10] K.L. Collins, Distance Matrices of Trees (Ph.D. Thesis, Massachusetts Institute of Technology, 1986).
[11] M. Fischermann, A. Homann, D. Rautenbach, L. Székely and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127–137. doi:10.1016/S0166-218X(01)00357-2
[12] M. Goubko, On minimum terminal distance spectral radius of trees with given degree sequence, (2015). arXiv:1507.01733
[13] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. 50 (1971) 2495–2519. doi:10.1002/j.1538-7305.1971.tb02618.x
[14] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities (Cambridge University Press, 1952).
[15] A. Heydari, On extremal trees with respect to their terminal distance spectral radius, Australas. J. Combin. 69 (2017) 159–168.
[16] A. Ilić, Distance spectral radius of trees with given matching number, Discrete Appl. Math. 158 (2010) 1799–1806. doi:10.1016/j.dam.2010.06.018
[17] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106–113. doi:10.1016/j.laa.2008.07.005
[18] H. Lin and B. Zhou, The distance spectral radius of graphs with given number of odd vertices, Electron. J. Linear Algebra 31 (2016) 286–305. doi:10.13001/1081-3810.2877
[19] H. Lin and B. Zhou, The distance spectral radius of trees, Linear Multilinear Algebra 67 (2018) 370–390. doi:10.1080/03081087.2017.1418830
[20] W. Lin, Y. Zhang, Q. Chen, J. Chen, C. Ma and J. Chen, Ordering trees by their distance spectral radii, Discrete Appl. Math. 203 (2016) 106–110. doi:10.1016/j.dam.2015.09.009
[21] Z. Luo and B. Zhou, On distance spectral radius of trees and fixed maximum degree, Filomat 29 (2015) 2021–2026. doi:10.2298/FIL1509021L
[22] M. Nath and S. Paul, On the distance spectral radius of trees, Linear Multilinear Algebra 61 (2013) 847–855. doi:10.1080/03081087.2012.711324
[23] W. Ning, L. Ouyang and M. Lu, Distance spectral radius of trees with fixed number of pendent vertices, Linear Algebra Appl. 439 (2013) 2240–2249. doi:10.1016/j.laa.2013.06.030
[24] N.S. Schmuck, S.G. Wagner and H. Wang, Greedy trees, caterpillars, and Wiener-type graph invariants, MATCH Commun. Math. Comput. Chem. 68 (2012) 273–292.
[25] D. Stevanović and A. Ilić, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168–179. doi:10.13001/1081-3810.1366
[26] L.A. Székely, H. Wang and T. Wu, The sum of the distances between the leaves of a tree and the semi-regular property, Discrete Math. 311 (2011) 1197–1203. doi:10.1016/j.disc.2010.06.005
[27] H. Wang, The extremal values of the Wiener index of a tree with given degree sequence, Discrete Appl. Math. 156 (2008) 2647–2654. doi:10.1016/j.dam.2007.11.005
[28] Y. Wang, R. Xing, B. Zhou and F. Dong, A note on distance spectral radius of trees, Spec. Matrices 5 (2017) 296–300. doi:10.1515/spma-2017-0021
[29] Y. Wang and B. Zhou, On distance spectral radius of graphs, Linear Algebra Appl. 438 (2013) 3490–3503. doi:10.1016/j.laa.2012.12.024
[30] R. Xing, B. Zhou and F. Dong, The effect of a graft transformation on distance spectral radius, Linear Algebra Appl. 457 (2014) 261–275. doi:10.1016/j.laa.2014.05.024
[31] G. Yu, S. Guo and M. Zhai, Distance spectral radius of a tree with given diameter, Ars Combin. 134 (2017) 351–362.
[32] X.-D. Zhang, The Laplacian spectral radii of trees with given degree sequences, Discrete Math. 308 (2008) 3143–3150. doi:10.1016/j.disc.2007.06.017
[33] X.-D. Zhang, Q.-Y. Xiang, L.-Q. Xu and R.-Y. Pan, The Wiener index of trees with given degree sequences, MATCH Commun. Math. Comput. Chem. 60 (2008) 623–644.