Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a7, author = {Cioab\u{a}, Sebastian M. and Elzinga, Randall J. and Gregory, David A.}, title = {Some {Observations} on the {Smallest} {Adjacency} {Eigenvalue} of a {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {467--493}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a7/} }
TY - JOUR AU - Cioabă, Sebastian M. AU - Elzinga, Randall J. AU - Gregory, David A. TI - Some Observations on the Smallest Adjacency Eigenvalue of a Graph JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 467 EP - 493 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a7/ LA - en ID - DMGT_2020_40_2_a7 ER -
%0 Journal Article %A Cioabă, Sebastian M. %A Elzinga, Randall J. %A Gregory, David A. %T Some Observations on the Smallest Adjacency Eigenvalue of a Graph %J Discussiones Mathematicae. Graph Theory %D 2020 %P 467-493 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a7/ %G en %F DMGT_2020_40_2_a7
Cioabă, Sebastian M.; Elzinga, Randall J.; Gregory, David A. Some Observations on the Smallest Adjacency Eigenvalue of a Graph. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 467-493. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a7/
[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83–96. doi:10.1007/BF02579166
[2] N. Alon, I. Benjamini, A. Lubetzky and S. Sodin, Non-backtracking random walks mix faster, Commun. Contemp. Math. 9 (2007) 585–603. doi:10.1142/S0219199707002551
[3] N. Alon and V.D. Milman, λ 1, isoperimetric inequalities for graphs and superconcentrators, J. Combin. Theory Ser. B 38 (1985) 73–88. doi:10.1016/0095-8956(85)90092-9
[4] R. Aharoni, N. Alon and E. Berger, Eigenvalues of K1,k-free graphs and the connectivity of their independence complexes, J. Graph Theory 83 (2016) 384–391. doi:10.1002/jgt.22004
[5] N. Alon and B. Sudakov, Bipartite subgraphs and the smallest eigenvalue, Combin. Probab. Comput. 9 (2000) 1–12. doi:10.1017/S0963548399004071
[6] F.K. Bell, D. Cvetković, P. Rowlinson and S.K. Simić, Graphs for which the least eigenvalue is minimal I, Linear Algebra Appl. 429 (2008) 234–241. doi:10.1016/j.laa.2008.02.032
[7] F.K. Bell, D. Cvetković, P. Rowlinson and S.K. Simić, Graphs for which the least eigenvalue is minimal II, Linear Algebra Appl. 429 (2008) 2168–2179. doi:10.1016/j.laa.2008.06.018
[8] N. Biggs, Algebraic Graph Theory, 2nd Edition (Cambridge University Press, Cambridge 1993).
[9] R.C. Bose, Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963) 389–419. doi:10.2140/pjm.1963.13.389
[10] A.E. Brouwer, S.M. Cioabă, F. Ihringer and M. McGinnis, The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters, J. Combin. Theory Ser. B 133 (2018) 88–121. doi:10.1016/j.jctb.2018.04.005
[11] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, New York, 2012). doi:10.1007/978-1-4614-1939-6
[12] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Filippo, Harmonic Analysis on Finite Groups. Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Studies in Advanced Mathematics 108 (Cambridge University Press, Cambridge, 2008).
[13] M. Chudnovsky and P. Seymour, The structure of claw-free graphs, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 327 (2005) 153–172. doi:10.1017/CBO9780511734885.008
[14] S.M. Cioabă, Eigenvalues, Expanders and Gaps between Primes, Ph.D. Thesis (Queen’s University at Kingston, Canada, 2005).
[15] S.M. Cioabă, On the extreme eigenvalues of regular graphs, J. Combin. Theory, Ser. B 96 (2006) 367–373. doi:10.1016/j.jctb.2005.09.002
[16] S.M. Cioabă, The spectral radius and maximum degree of irregular graphs, Electron. J. Combin. 14 (2007) #R38.
[17] S.M. Cioabă and P. Xu, Mixing rates of random walks with little backtracking, Contemp. Math. 655 (2015) 27–58. doi:10.1090/conm/655/13202
[18] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Applications (Academic Press, New York, 1980).
[19] D.M. Cvetković, M. Doob and S. Simić, Generalized line graphs, J. Graph Theory 5 (1981) 385–399. doi:10.1002/jgt.3190050408
[20] D.M. Cvetković, P. Rowlinson and S. Simić, Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue -2, London Math. Soc. Lecture Note Ser. 314 (Cambridge University Press, Cambridge, 2004).
[21] D.M. Cvetković, P. Rowlinson and S. Simić, Graphs with least eigenvalue − 2 : a new proof of the 31 forbidden subgraphs theorem, Des. Codes Cryptogr. 34 (2005) 229–240. doi:10.1007/s10623-004-4856-5
[22] C. Godsil and K. Meagher, Erdős-Ko-Rado Theorems: Algebraic Approaches, Cambridge Studies in Advanced Mathematics 149 (Cambridge University Press, Cambridge, 2016). doi:10.1017/CBO9781316414958.
[23] C. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001).
[24] M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42 (1995) 1115–1145. doi:10.1111/j.1553-2712.1995.tb03162.x
[25] A.J. Hoffman, On graphs whose least eigenvalues exceed −1 − \(\sqrt{2}\), Linear Algebra Appl. 16 (1977) 153–165. doi:10.1016/0024-3795(77)90027-1
[26] H. Karlo, How good is the Goemans–Williamson max cut algorithm?, SIAM J. Comput. 20 (1999) 336–350. doi:10.1137/S0097539797321481
[27] F. Knox and B. Mohar, Fractional decompositions and smallest-eigenvalue separation, Electron. J. Combin. 26 (2019) #P4.41.
[28] J. Krausz, Demonstration nouvelle d’une théorèm de Whitney sur les reseaux, Mat. Fiz. Lapok 50 (1943) 75–89.
[29] W.-C. Winnie Li, Character sums and Abelian Ramanujan graphs, J. Number Theory 41 (1992) 199–217. doi:10.1016/0022-314X(92)90120-E
[30] N. Linial, Personal communication to the 1st author, (2004).
[31] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory IT-25 (1979) 1–7. doi:10.1109/TIT.1979.1055985
[32] V. Nikiforov, The spectral radius of subgraphs of regular graphs, Electron. J. Combin. 14 (2007) #N20.
[33] N.J. Pullman, H. Shank and W.D. Wallis, Cliques coverings of graphs V : maximal cliques partitions, Bull. Aust. Math. Soc. 25 (1982) 337–356. doi:10.1017/S0004972700005414
[34] L. Trevisan, Max cut and the smallest eigenvalue, SIAM J. Comput. 41 (2012) 1769–1786. doi:10.1137/090773714
[35] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Edition 2 (Cambridge University Press, Cambridge, 2002). doi:10.1017/CBO9780511987045