Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a6, author = {Cardoso, Domingos M. and Past\'en, Germain and Rojo, Oscar}, title = {Graphs with {Clusters} {Perturbed} by {Regular} {Graphs{\textemdash}A\protect\textsubscript{\ensuremath{\alpha}}-Spectrum} and {Applications}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {451--466}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a6/} }
TY - JOUR AU - Cardoso, Domingos M. AU - Pastén, Germain AU - Rojo, Oscar TI - Graphs with Clusters Perturbed by Regular Graphs—Aα-Spectrum and Applications JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 451 EP - 466 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a6/ LA - en ID - DMGT_2020_40_2_a6 ER -
%0 Journal Article %A Cardoso, Domingos M. %A Pastén, Germain %A Rojo, Oscar %T Graphs with Clusters Perturbed by Regular Graphs—Aα-Spectrum and Applications %J Discussiones Mathematicae. Graph Theory %D 2020 %P 451-466 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a6/ %G en %F DMGT_2020_40_2_a6
Cardoso, Domingos M.; Pastén, Germain; Rojo, Oscar. Graphs with Clusters Perturbed by Regular Graphs—Aα-Spectrum and Applications. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 451-466. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a6/
[1] N.M.M. Abreu, D.M. Cardoso, E.A. Martins, M. Robbiano and B. San Martín, On the Laplacian and signless Laplacian spectrum of a graph with k pairwise co-neighbor vertices, Linear Algebra Appl. 437 (2012) 2308–2316. doi:10.1016/j.laa.2012.05.013
[2] S. Barik, S. Pati and B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (2007) 47–56. doi:10.1137/050624029
[3] A. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, New York, 2012). doi:10.1007/978-1-4614-1939-6
[4] D.M. Cardoso, G. Pastén and O. Rojo, On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices, Linear Algebra Appl. 552 (2018) 52–70. doi:10.1016/j.laa.2018.04.013
[5] D.M. Cardoso and O. Rojo, Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues, Linear Algebra Appl. 512 (2017) 113–128. doi:10.1016/j.laa.2016.09.031
[6] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacian of finite graphs, Linear Algebra Appl. 423 (2007) 155–171. doi:10.1016/j.laa.2007.01.009
[7] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
[8] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. doi:10.1007/BF01844162
[9] J.-M. Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006) 59–71. doi:10.1016/j.laa.2005.08.002
[10] R. Horn and C. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985). doi:10.1017/CBO9780511810817
[11] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197–198 (1994) 143–176. doi:10.1016/0024-3795(94)90486-3
[12] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472–1475. doi:10.1016/j.jmaa.2006.03.072
[13] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81–107. doi:10.2298/AADM1701081N
[14] V. Nikiforov and O. Rojo, A note on the positive semidefiniteness of Aα(G), Linear Algebra Appl. 519 (2017) 156–163. doi:10.1016/j.laa.2016.12.042
[15] G. Pastén and O. Rojo, Laplacian spectrum, Laplacian-energy-like invariant, and Kirchho index of graphs constructed by adding edges on pendent vertices, MATCH Commun. Math. Comput. Chem. 73 (2015) 27–40.
[16] O. Rojo, Effects on the energy and estrada indices by adding edges among pendent vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 343–358.
[17] J.Y. Shao, J.M. Guo and H.Y. Shan, The ordering of trees and connected graphs by algebraic connectivity, Linear Algebra Appl. 428 (2008) 1421–1438. doi:10.1016/j.laa.2007.08.031
[18] W. So, Commutativity and spectra of Hermitian matrices, Linear Algebra Appl. 212–213 (1994) 121–129. doi:10.1016/0024-3795(94)90399-9