Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a4, author = {Belardo, Francesco and Brunetti, Maurizio and Reff, Nathan}, title = {Balancedness and the {Least} {Laplacian} {Eigenvalue} of {Some} {Complex} {Unit} {Gain} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {417--433}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/} }
TY - JOUR AU - Belardo, Francesco AU - Brunetti, Maurizio AU - Reff, Nathan TI - Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 417 EP - 433 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/ LA - en ID - DMGT_2020_40_2_a4 ER -
%0 Journal Article %A Belardo, Francesco %A Brunetti, Maurizio %A Reff, Nathan %T Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 417-433 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/ %G en %F DMGT_2020_40_2_a4
Belardo, Francesco; Brunetti, Maurizio; Reff, Nathan. Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 417-433. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/
[1] R.B. Bapat, D. Kalita and S. Pati, On weighted directed graphs, Linear Algebra Appl. 436 (2012) 99–111. doi:10.1016/j.laa.2011.06.035
[2] F. Belardo, Balancedness and the least eigenvalue of Laplacian of signed graphs, Linear Algebra Appl. 446 (2014) 133–147. doi:10.1016/j.laa.2014.01.001
[3] S. Fallat and Y.-Z. Fan, Bipartiteness and the least eigenvalue of signless Laplacian of graphs, Linear Algebra Appl. 436 (2012) 3254–3267. doi:10.1016/j.laa.2011.11.015
[4] K. Guo and B. Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory 85 (2017) 217–248. doi:10.1002/jgt.22057
[5] R.A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, New York, 2012). doi:10.1017/CBO9781139020411
[6] D. Kalita, Properties of first eigenvectors and first eigenvalues of nonsingular weighted directed graphs, Electron. J. Linear Algebra 30 (2015) 227–242. doi:10.13001/1081-3810.3029
[7] N. Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl. 436 (2012) 3165–3176. doi:10.1016/j.laa.2011.10.021
[8] N. Reff, Oriented gain graphs, line graphs and eigenvalues, Linear Algebra Appl. 506 (2016) 316–328. doi:10.1016/j.laa.2016.05.040
[9] Y.-Y. Tan and Y.Z. Fan, On edge singularity and eigenvectors of mixed graphs, Acta Math. Sin. (Engl. Ser.) 24 (2008) 139–146. doi:10.1007/s10114-007-1000-2
[10] Y. Wang, S.-C. Gong and Y.-Z. Fan, On the determinant of the Laplacian matrix of a complex unit gain graph, Discrete Math. 341 (2018) 81–86. doi:10.1016/j.disc.2017.07.003
[11] T. Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B 47 (1989) 32–52. doi:10.1016/0095-8956(89)90063-4
[12] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electron. J. Combin. (1998) #DS8.