Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 417-433
Voir la notice de l'article provenant de la source Library of Science
Let 𝕋_4 = ±1, ±i be the subgroup of 4-th roots of unity inside 𝕋, the multiplicative group of complex units. A complex unit gain graph Φ is a simple graph Γ = (V(Γ) = v_1, . . ., v_n, E(Γ)) equipped with a map φ:E(Γ)→𝕋 defined on the set of oriented edges such that φ(v_iv_j) = φ(v_jv_i)^−1. The gain graph Φ is said to be balanced if for every cycle C = v_i_1v_i_2 . . . v_i_kv_i_1 we have φ(v_i_1v_i_2)φ(v_i_2v_i_3) . . . φ(v_i_kv_i_1) = 1. It is known that Φ is balanced if and only if the least Laplacian eigenvalue λ_n(Φ) is 0. Here we show that, if Φ is unbalanced and φ(Φ) ⊆ 𝕋_4, the eigenvalue λ_n(Φ) measures how far is Φ from being balanced. More precisely, let ν(Φ) (respectively, ∈(Φ)) be the number of vertices (respectively, edges) to cancel in order to get a balanced gain subgraph. We show that λ_n(Φ) ≤ ν(Φ) ≤ ∈(Φ). We also analyze the case when λ_n(Φ) = ν(Φ). In fact, we identify the structural conditions on Φ that lead to such equality.
Keywords:
gain graph, Laplacian eigenvalues, balanced graph, algebraic frustration
@article{DMGT_2020_40_2_a4,
author = {Belardo, Francesco and Brunetti, Maurizio and Reff, Nathan},
title = {Balancedness and the {Least} {Laplacian} {Eigenvalue} of {Some} {Complex} {Unit} {Gain} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {417--433},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/}
}
TY - JOUR AU - Belardo, Francesco AU - Brunetti, Maurizio AU - Reff, Nathan TI - Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 417 EP - 433 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/ LA - en ID - DMGT_2020_40_2_a4 ER -
%0 Journal Article %A Belardo, Francesco %A Brunetti, Maurizio %A Reff, Nathan %T Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 417-433 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/ %G en %F DMGT_2020_40_2_a4
Belardo, Francesco; Brunetti, Maurizio; Reff, Nathan. Balancedness and the Least Laplacian Eigenvalue of Some Complex Unit Gain Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 417-433. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a4/