Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a3, author = {An{\dj}eli\'c, Milica and Koledin, Tamara and Stani\'c, Zoran}, title = {On {Regular} {Signed} {Graphs} with {Three} {Eigenvalues}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {405--416}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/} }
TY - JOUR AU - Anđelić, Milica AU - Koledin, Tamara AU - Stanić, Zoran TI - On Regular Signed Graphs with Three Eigenvalues JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 405 EP - 416 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/ LA - en ID - DMGT_2020_40_2_a3 ER -
Anđelić, Milica; Koledin, Tamara; Stanić, Zoran. On Regular Signed Graphs with Three Eigenvalues. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 405-416. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/
[1] F. Belardo and S.K. Simić, On the Laplacian coefficients of signed graphs, Linear Algebra Appl. 475 (2015) 94–113. doi:10.1016/j.laa.2015.02.007
[2] C.J. Colbourn and J.H. Dinitz (Ed(s)), Handbook of Combinatorial Designs (Chapman and Hall/CRC, Boca Raton, 2007). doi:10.1201/9781420010541
[3] E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226–228 (1995) 139–162. doi:10.1016/0024-3795(94)00346-F
[4] E. Ghasemian and G.H. Fath-Tabar, On signed graphs with two distinct eigenvalues, Filomat 31 (2017) 6393–6400. doi:10.2298/FIL1720393G
[5] C.D. Godsil and B.D. McKay, Feasibility conditions for the existence of walk-regular graphs, Linear Algebra Appl. 30 (1980) 51–61. doi:10.1016/0024-3795(80)90180-9
[6] C.D. Godsil and B.D. McKay, Spectral conditions for the reconstructibility of a graph, J. Combin. Theory Ser. B 30 (1981) 285–289. doi:10.1016/0095-8956(81)90046-0
[7] G.R.W. Greaves, Equiangular line systems and switching classes containing regular graphs, Linear Algebra Appl. 536 (2018) 31–51. doi:10.1016/j.laa.2017.09.008
[8] J. McKee and C. Smyth, Integer symmetric matrices having all their eigenvalues in the interval [ − 2, 2], J. Algebra 317 (2007) 260–290. doi:10.1016/j.jalgebra.2007.05.019
[9] P. Rowlinson, More on graphs with just three distinct eigenvalues, Appl. Anal. Discrete Math. 11 (2017) 74–80. doi:10.2298/AADM161111033R
[10] Z. Stanić, Integral regular net-balanced signed graphs with vertex degree at most four, Ars Math. Contemp. 17 (2019) 103–114. doi:10.26493/1855-3974.1740.803
[11] Z. Stanić, Perturbations in a signed graph and its index, Discuss. Math. Graph Theory 38 (2018) 841–852. doi:10.7151/dmgt.2035
[12] Z. Stanić, Regular Graphs. A Spectral Approach (De Gruyter, Berlin, 2017). doi:10.1515/9783110351347
[13] Z. Stanić, Spectra of signed graphs with two eigenvalues, Appl. Math. Comput. 364 (2020) 124627. doi:10.1016/j.amc.2019.124627
[14] T. Zaslavsky, Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications, Mysore 2008, Acharya, Katona and Nešetřil (Ed(s)), J. Ramanujan Math. Soc. 13 (2010) 207–229.