On Regular Signed Graphs with Three Eigenvalues
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 405-416.

Voir la notice de l'article provenant de la source Library of Science

In this paper our focus is on regular signed graphs with exactly 3 (distinct) eigenvalues. We establish certain basic results; for example, we show that they are walk-regular. We also give some constructions and determine all the signed graphs with 3 eigenvalues, under the constraint that they are either signed line graphs or have vertex degree 3. We also report our result of computer search on those with at most 10 vertices.
Keywords: adjacency matrix, eigenvalue, regular signed graph, signed line graph, block design
@article{DMGT_2020_40_2_a3,
     author = {An{\dj}eli\'c, Milica and Koledin, Tamara and Stani\'c, Zoran},
     title = {On {Regular} {Signed} {Graphs} with {Three} {Eigenvalues}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {405--416},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/}
}
TY  - JOUR
AU  - Anđelić, Milica
AU  - Koledin, Tamara
AU  - Stanić, Zoran
TI  - On Regular Signed Graphs with Three Eigenvalues
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 405
EP  - 416
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/
LA  - en
ID  - DMGT_2020_40_2_a3
ER  - 
%0 Journal Article
%A Anđelić, Milica
%A Koledin, Tamara
%A Stanić, Zoran
%T On Regular Signed Graphs with Three Eigenvalues
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 405-416
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/
%G en
%F DMGT_2020_40_2_a3
Anđelić, Milica; Koledin, Tamara; Stanić, Zoran. On Regular Signed Graphs with Three Eigenvalues. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 405-416. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a3/

[1] F. Belardo and S.K. Simić, On the Laplacian coefficients of signed graphs, Linear Algebra Appl. 475 (2015) 94–113. doi:10.1016/j.laa.2015.02.007

[2] C.J. Colbourn and J.H. Dinitz (Ed(s)), Handbook of Combinatorial Designs (Chapman and Hall/CRC, Boca Raton, 2007). doi:10.1201/9781420010541

[3] E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226–228 (1995) 139–162. doi:10.1016/0024-3795(94)00346-F

[4] E. Ghasemian and G.H. Fath-Tabar, On signed graphs with two distinct eigenvalues, Filomat 31 (2017) 6393–6400. doi:10.2298/FIL1720393G

[5] C.D. Godsil and B.D. McKay, Feasibility conditions for the existence of walk-regular graphs, Linear Algebra Appl. 30 (1980) 51–61. doi:10.1016/0024-3795(80)90180-9

[6] C.D. Godsil and B.D. McKay, Spectral conditions for the reconstructibility of a graph, J. Combin. Theory Ser. B 30 (1981) 285–289. doi:10.1016/0095-8956(81)90046-0

[7] G.R.W. Greaves, Equiangular line systems and switching classes containing regular graphs, Linear Algebra Appl. 536 (2018) 31–51. doi:10.1016/j.laa.2017.09.008

[8] J. McKee and C. Smyth, Integer symmetric matrices having all their eigenvalues in the interval [ − 2, 2], J. Algebra 317 (2007) 260–290. doi:10.1016/j.jalgebra.2007.05.019

[9] P. Rowlinson, More on graphs with just three distinct eigenvalues, Appl. Anal. Discrete Math. 11 (2017) 74–80. doi:10.2298/AADM161111033R

[10] Z. Stanić, Integral regular net-balanced signed graphs with vertex degree at most four, Ars Math. Contemp. 17 (2019) 103–114. doi:10.26493/1855-3974.1740.803

[11] Z. Stanić, Perturbations in a signed graph and its index, Discuss. Math. Graph Theory 38 (2018) 841–852. doi:10.7151/dmgt.2035

[12] Z. Stanić, Regular Graphs. A Spectral Approach (De Gruyter, Berlin, 2017). doi:10.1515/9783110351347

[13] Z. Stanić, Spectra of signed graphs with two eigenvalues, Appl. Math. Comput. 364 (2020) 124627. doi:10.1016/j.amc.2019.124627

[14] T. Zaslavsky, Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications, Mysore 2008, Acharya, Katona and Nešetřil (Ed(s)), J. Ramanujan Math. Soc. 13 (2010) 207–229.