Graphs Whose Aα-Spectral Radius Does Not Exceed 2
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690

Voir la notice de l'article provenant de la source Library of Science

Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real α ∈ [0, 1], we consider Aα(G) = αD(G) + (1 − α)A(G) as a graph matrix, whose largest eigenvalue is called the Aα-spectral radius of G. We first show that the smallest limit point for the Aα-spectral radius of graphs is 2, and then we characterize the connected graphs whose Aα-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their Aα-spectra.
Keywords: Aα -matrix, Smith graphs, limit point, spectral radius, index
@article{DMGT_2020_40_2_a19,
     author = {Wang, Jian Feng and Wang, Jing and Liu, Xiaogang and Belardo, Francesco},
     title = {Graphs {Whose} {A\protect\textsubscript{\ensuremath{\alpha}}-Spectral} {Radius} {Does} {Not} {Exceed} 2},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {677--690},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/}
}
TY  - JOUR
AU  - Wang, Jian Feng
AU  - Wang, Jing
AU  - Liu, Xiaogang
AU  - Belardo, Francesco
TI  - Graphs Whose Aα-Spectral Radius Does Not Exceed 2
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 677
EP  - 690
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/
LA  - en
ID  - DMGT_2020_40_2_a19
ER  - 
%0 Journal Article
%A Wang, Jian Feng
%A Wang, Jing
%A Liu, Xiaogang
%A Belardo, Francesco
%T Graphs Whose Aα-Spectral Radius Does Not Exceed 2
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 677-690
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/
%G en
%F DMGT_2020_40_2_a19
Wang, Jian Feng; Wang, Jing; Liu, Xiaogang; Belardo, Francesco. Graphs Whose Aα-Spectral Radius Does Not Exceed 2. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/