Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a19, author = {Wang, Jian Feng and Wang, Jing and Liu, Xiaogang and Belardo, Francesco}, title = {Graphs {Whose} {A\protect\textsubscript{\ensuremath{\alpha}}-Spectral} {Radius} {Does} {Not} {Exceed} 2}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {677--690}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/} }
TY - JOUR AU - Wang, Jian Feng AU - Wang, Jing AU - Liu, Xiaogang AU - Belardo, Francesco TI - Graphs Whose Aα-Spectral Radius Does Not Exceed 2 JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 677 EP - 690 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/ LA - en ID - DMGT_2020_40_2_a19 ER -
%0 Journal Article %A Wang, Jian Feng %A Wang, Jing %A Liu, Xiaogang %A Belardo, Francesco %T Graphs Whose Aα-Spectral Radius Does Not Exceed 2 %J Discussiones Mathematicae. Graph Theory %D 2020 %P 677-690 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/ %G en %F DMGT_2020_40_2_a19
Wang, Jian Feng; Wang, Jing; Liu, Xiaogang; Belardo, Francesco. Graphs Whose Aα-Spectral Radius Does Not Exceed 2. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/
[1] F. Belardo, E.M. Li Marzi, S.K. Simić and J.F. Wang, Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value, Linear Algebra Appl. 435 (2011) 2913–2920. doi:10.1016/j.laa.2011.05.006
[2] A.E. Brouwer and A. Neumaier, The graphs with spectral radius between 2 and \(\sqrt{2+\sqrt{5}}\), Linear Algebra Appl. 114/115 (1989) 273–276. doi:10.1016/0024-3795(89)90466-7
[3] S.M. Cioabă, E.R. van Dam, J.H. Koolen and J.-H. Lee, Asymptotic results on the spectral radius and the diameter of graphs, Linear Algebra Appl. 432 (2010) 722–737. doi:10.1016/j.laa.2009.09.016
[4] D.M. Cvetković, M. Doob and I. Gutman, On graphs whose spectral radius does not exceed \((2+\sqrt{5})^{1/2}\), Ars Combin. 14 (1982) 225–239.
[5] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum ?, Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X
[6] E.R. van Dam and W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586. doi:10.1016/j.disc.2008.08.019
[7] N. Ghareghani, G.R. Omidi and B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most \(\sqrt{2+\sqrt{5}}\), Linear Algebra Appl. 420 (2007) 483–489. doi:10.1016/j.laa.2006.08.009
[8] K. Guo and B. Mohar, Digraphs with Hermitian spectral radius below 2 and their cospectrality with paths, Discrete Appl. 340 (2017) 2616–2632. doi:10.1016/j.disc.2017.01.018
[9] A.J. Hoffman, On limit points on spectral radii of non-negative symmetric integral matrices, in: Graph Theory and Applications, Y. Alavi, D.R. Lick, A.T. White (Ed(s)), Lecture Notes in Math. 303 (Springer-Verlag, Berlin, 1972) 165–172.
[10] A.J. Hoffman and J.H. Smith, On the spectral radii of topologically equivalent graphs, in: Recent Advances in Graph Theory, M. Fiedler (Ed(s)), (Academia Praha, Prague, 1975) 273–281.
[11] H.Q. Lin, X. Huang and J. Xue, A note on the Aα-spectral radius of graphs, Linear Algebra Appl. 557 (2018) 430–437. doi:10.1016/j.laa.2018.08.008
[12] H.Q. Lin, X.G. Liu and J. Liu, Graphs determined by their Aα-spectra, Discrete Math. 342 (2019) 441–450. doi:10.1016/j.disc.2018.10.006
[13] H.Q. Lin, J. Xue and J.L. Shu, On the Aα-spectra of graphs, Linear Algebra Appl. 556 (2018) 210–219. doi:10.1016/j.laa.2018.07.003
[14] X.G. Liu and S.Y. Liu, On the Aα-characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018) 274–288. doi:10.1016/j.laa.2018.02.014
[15] L. Lu and S. Man, Connected hypergraphs with small spectral radius, Linear Algebra Appl. 509 (2016) 206–227. doi:10.1016/j.laa.2016.07.013
[16] V. Nikiforov, Merging the A-and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81–107. doi:10.2298/AADM1701081N
[17] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the Aα-spectra of trees, Linear Algebra Appl. 520 (2017) 286–305. doi:10.1016/j.laa.2017.01.029
[18] V. Nikiforov and O. Rojo, A note on the positive semidefiniteness of Aα ( G ), Linear Algebra Appl. 519 (2017) 156–163. doi:10.1016/j.laa.2016.12.042
[19] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, R. Guy, H. Hanani, N. Sauer, J. Schonheim (Ed(s)), (Gordon and Breach, New York, 1970) 403–406.
[20] J.F. Wang and F. Belardo, Spectral characterizations of graphs with small spectral radius, Linear Algebra Appl. 437 (2012) 2408–2416. doi:10.1016/j.laa.2012.06.028
[21] J.F. Wang, F. Belardo, Q.X. Huang and E.M. Li Marzi, On graphs whose Laplacian index does not exceed 4.5, Linear Algebra Appl. 438 (2013) 1541–1550. doi:10.1016/j.laa.2011.02.043
[22] J.F. Wang, Q.X. Huang, F. Belardo and E.M. Li Marzi, On graphs whose signless Laplacian index does not exceed 4.5, Linear Algebra Appl. 431 (2009) 162–178. doi:10.1016/j.laa.2009.02.017
[23] J.F. Wang, Q.X. Huang, X. An and F. Belardo, Some notes on graphs whose spectral radius is close to \(\frac{3}{2}\sqrt{2}\), Linear Algebra Appl. 429 (2008) 1606–1618. doi:10.1016/j.laa.2008.04.034
[24] R. Woo and A. Neumaier, On graphs whose spectral radius is bounded by \(\frac{3}{2}\sqrt{2}\), Graphs Combin. 23 (2007) 713–726. doi:10.1007/s00373-007-0745-9