Graphs Whose Aα-Spectral Radius Does Not Exceed 2
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690.

Voir la notice de l'article provenant de la source Library of Science

Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real α ∈ [0, 1], we consider Aα(G) = αD(G) + (1 − α)A(G) as a graph matrix, whose largest eigenvalue is called the Aα-spectral radius of G. We first show that the smallest limit point for the Aα-spectral radius of graphs is 2, and then we characterize the connected graphs whose Aα-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their Aα-spectra.
Keywords: Aα -matrix, Smith graphs, limit point, spectral radius, index
@article{DMGT_2020_40_2_a19,
     author = {Wang, Jian Feng and Wang, Jing and Liu, Xiaogang and Belardo, Francesco},
     title = {Graphs {Whose} {A\protect\textsubscript{\ensuremath{\alpha}}-Spectral} {Radius} {Does} {Not} {Exceed} 2},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {677--690},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/}
}
TY  - JOUR
AU  - Wang, Jian Feng
AU  - Wang, Jing
AU  - Liu, Xiaogang
AU  - Belardo, Francesco
TI  - Graphs Whose Aα-Spectral Radius Does Not Exceed 2
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 677
EP  - 690
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/
LA  - en
ID  - DMGT_2020_40_2_a19
ER  - 
%0 Journal Article
%A Wang, Jian Feng
%A Wang, Jing
%A Liu, Xiaogang
%A Belardo, Francesco
%T Graphs Whose Aα-Spectral Radius Does Not Exceed 2
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 677-690
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/
%G en
%F DMGT_2020_40_2_a19
Wang, Jian Feng; Wang, Jing; Liu, Xiaogang; Belardo, Francesco. Graphs Whose Aα-Spectral Radius Does Not Exceed 2. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/

[1] F. Belardo, E.M. Li Marzi, S.K. Simić and J.F. Wang, Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value, Linear Algebra Appl. 435 (2011) 2913–2920. doi:10.1016/j.laa.2011.05.006

[2] A.E. Brouwer and A. Neumaier, The graphs with spectral radius between 2 and \(\sqrt{2+\sqrt{5}}\), Linear Algebra Appl. 114/115 (1989) 273–276. doi:10.1016/0024-3795(89)90466-7

[3] S.M. Cioabă, E.R. van Dam, J.H. Koolen and J.-H. Lee, Asymptotic results on the spectral radius and the diameter of graphs, Linear Algebra Appl. 432 (2010) 722–737. doi:10.1016/j.laa.2009.09.016

[4] D.M. Cvetković, M. Doob and I. Gutman, On graphs whose spectral radius does not exceed \((2+\sqrt{5})^{1/2}\), Ars Combin. 14 (1982) 225–239.

[5] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum ?, Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X

[6] E.R. van Dam and W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586. doi:10.1016/j.disc.2008.08.019

[7] N. Ghareghani, G.R. Omidi and B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most \(\sqrt{2+\sqrt{5}}\), Linear Algebra Appl. 420 (2007) 483–489. doi:10.1016/j.laa.2006.08.009

[8] K. Guo and B. Mohar, Digraphs with Hermitian spectral radius below 2 and their cospectrality with paths, Discrete Appl. 340 (2017) 2616–2632. doi:10.1016/j.disc.2017.01.018

[9] A.J. Hoffman, On limit points on spectral radii of non-negative symmetric integral matrices, in: Graph Theory and Applications, Y. Alavi, D.R. Lick, A.T. White (Ed(s)), Lecture Notes in Math. 303 (Springer-Verlag, Berlin, 1972) 165–172.

[10] A.J. Hoffman and J.H. Smith, On the spectral radii of topologically equivalent graphs, in: Recent Advances in Graph Theory, M. Fiedler (Ed(s)), (Academia Praha, Prague, 1975) 273–281.

[11] H.Q. Lin, X. Huang and J. Xue, A note on the Aα-spectral radius of graphs, Linear Algebra Appl. 557 (2018) 430–437. doi:10.1016/j.laa.2018.08.008

[12] H.Q. Lin, X.G. Liu and J. Liu, Graphs determined by their Aα-spectra, Discrete Math. 342 (2019) 441–450. doi:10.1016/j.disc.2018.10.006

[13] H.Q. Lin, J. Xue and J.L. Shu, On the Aα-spectra of graphs, Linear Algebra Appl. 556 (2018) 210–219. doi:10.1016/j.laa.2018.07.003

[14] X.G. Liu and S.Y. Liu, On the Aα-characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018) 274–288. doi:10.1016/j.laa.2018.02.014

[15] L. Lu and S. Man, Connected hypergraphs with small spectral radius, Linear Algebra Appl. 509 (2016) 206–227. doi:10.1016/j.laa.2016.07.013

[16] V. Nikiforov, Merging the A-and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81–107. doi:10.2298/AADM1701081N

[17] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the Aα-spectra of trees, Linear Algebra Appl. 520 (2017) 286–305. doi:10.1016/j.laa.2017.01.029

[18] V. Nikiforov and O. Rojo, A note on the positive semidefiniteness of Aα ( G ), Linear Algebra Appl. 519 (2017) 156–163. doi:10.1016/j.laa.2016.12.042

[19] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, R. Guy, H. Hanani, N. Sauer, J. Schonheim (Ed(s)), (Gordon and Breach, New York, 1970) 403–406.

[20] J.F. Wang and F. Belardo, Spectral characterizations of graphs with small spectral radius, Linear Algebra Appl. 437 (2012) 2408–2416. doi:10.1016/j.laa.2012.06.028

[21] J.F. Wang, F. Belardo, Q.X. Huang and E.M. Li Marzi, On graphs whose Laplacian index does not exceed 4.5, Linear Algebra Appl. 438 (2013) 1541–1550. doi:10.1016/j.laa.2011.02.043

[22] J.F. Wang, Q.X. Huang, F. Belardo and E.M. Li Marzi, On graphs whose signless Laplacian index does not exceed 4.5, Linear Algebra Appl. 431 (2009) 162–178. doi:10.1016/j.laa.2009.02.017

[23] J.F. Wang, Q.X. Huang, X. An and F. Belardo, Some notes on graphs whose spectral radius is close to \(\frac{3}{2}\sqrt{2}\), Linear Algebra Appl. 429 (2008) 1606–1618. doi:10.1016/j.laa.2008.04.034

[24] R. Woo and A. Neumaier, On graphs whose spectral radius is bounded by \(\frac{3}{2}\sqrt{2}\), Graphs Combin. 23 (2007) 713–726. doi:10.1007/s00373-007-0745-9