Graphs Whose Aα-Spectral Radius Does Not Exceed 2
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690
Voir la notice de l'article provenant de la source Library of Science
Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real α ∈ [0, 1], we consider Aα(G) = αD(G) + (1 − α)A(G) as a graph matrix, whose largest eigenvalue is called the Aα-spectral radius of G. We first show that the smallest limit point for the Aα-spectral radius of graphs is 2, and then we characterize the connected graphs whose Aα-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their Aα-spectra.
Keywords:
Aα -matrix, Smith graphs, limit point, spectral radius, index
@article{DMGT_2020_40_2_a19,
author = {Wang, Jian Feng and Wang, Jing and Liu, Xiaogang and Belardo, Francesco},
title = {Graphs {Whose} {A\protect\textsubscript{\ensuremath{\alpha}}-Spectral} {Radius} {Does} {Not} {Exceed} 2},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {677--690},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/}
}
TY - JOUR AU - Wang, Jian Feng AU - Wang, Jing AU - Liu, Xiaogang AU - Belardo, Francesco TI - Graphs Whose Aα-Spectral Radius Does Not Exceed 2 JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 677 EP - 690 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/ LA - en ID - DMGT_2020_40_2_a19 ER -
%0 Journal Article %A Wang, Jian Feng %A Wang, Jing %A Liu, Xiaogang %A Belardo, Francesco %T Graphs Whose Aα-Spectral Radius Does Not Exceed 2 %J Discussiones Mathematicae. Graph Theory %D 2020 %P 677-690 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/ %G en %F DMGT_2020_40_2_a19
Wang, Jian Feng; Wang, Jing; Liu, Xiaogang; Belardo, Francesco. Graphs Whose Aα-Spectral Radius Does Not Exceed 2. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 677-690. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a19/