A Spectral Characterization of the S-Clique Extension of the Triangular Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 663-676.

Voir la notice de l'article provenant de la source Library of Science

A regular graph is co-edge regular if there exists a constant µ such that any two distinct and non-adjacent vertices have exactly µ common neighbors. In this paper, we show that for integers s ≥ 2 and n large enough, any co-edge-regular graph which is cospectral with the s-clique extension of the triangular graph T (n) is exactly the s-clique extension of the triangular graph T (n).
Keywords: co-edge-regular graph, triangular graph, s-clique extension
@article{DMGT_2020_40_2_a18,
     author = {Tan, Ying-Ying and Koolen, Jack H. and Xia, Zheng-Jiang},
     title = {A {Spectral} {Characterization} of the {S-Clique} {Extension} of the {Triangular} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {663--676},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/}
}
TY  - JOUR
AU  - Tan, Ying-Ying
AU  - Koolen, Jack H.
AU  - Xia, Zheng-Jiang
TI  - A Spectral Characterization of the S-Clique Extension of the Triangular Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 663
EP  - 676
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/
LA  - en
ID  - DMGT_2020_40_2_a18
ER  - 
%0 Journal Article
%A Tan, Ying-Ying
%A Koolen, Jack H.
%A Xia, Zheng-Jiang
%T A Spectral Characterization of the S-Clique Extension of the Triangular Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 663-676
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/
%G en
%F DMGT_2020_40_2_a18
Tan, Ying-Ying; Koolen, Jack H.; Xia, Zheng-Jiang. A Spectral Characterization of the S-Clique Extension of the Triangular Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 663-676. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/

[1] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs (Springer-Verlag, Berlin, 1989). doi:10.1007/978-3-642-74341-2

[2] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, Heidelberg, 2012). doi:10.1007/978-1-4614-1939-6

[3] L.C. Chang, The uniqueness and non-uniqueness of the triangular association scheme, Sci. Record 3 (1959) 604–613.

[4] S. Hayat, J.H. Koolen and M. Riaz, A spectral characterization of the s-clique extension of the square grid graphs, European J. Combin. 76 (2019) 104–116. doi:10.1016/j.ejc.2018.09.009

[5] C.D. Godsil, G. Royle, Algebraic Graph Theory (Springer-Verlag, Berlin, 2001). doi:10.1007/978-1-4613-0163-9

[6] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226–228 (1995) 593–616. doi:10.1016/0024-3795(95)00199-2

[7] A.J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly 70 (1963) 30–36. doi:10.1080/00029890.1963.11990038

[8] J.H. Koolen, B. Gebremichel and J.Y. Yang, Sesqui-regular graphs with fixed smallest eigenvalue. https://arxiv.org/abs/1904.01274v1

[9] P. Terwilliger, Algebraic Graph Theory, Lecture Notes, unpublished. https://icu-hsuzuki.github.io/lecturenote/

[10] E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226–228 (1995) 139–162. doi:10.1016/0024-3795(94)00346-F

[11] E.R. van Dam, J.H. Koolen and H. Tanaka, Distance-regular graphs, Electron. J. Combin. (2016) #DS22.

[12] J.Y. Yang and J.H. Koolen, On the order of regular graphs with fixed second largest eigenvalue. http://arxiv.org/abs/1809.01888v1