Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a18, author = {Tan, Ying-Ying and Koolen, Jack H. and Xia, Zheng-Jiang}, title = {A {Spectral} {Characterization} of the {S-Clique} {Extension} of the {Triangular} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {663--676}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/} }
TY - JOUR AU - Tan, Ying-Ying AU - Koolen, Jack H. AU - Xia, Zheng-Jiang TI - A Spectral Characterization of the S-Clique Extension of the Triangular Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 663 EP - 676 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/ LA - en ID - DMGT_2020_40_2_a18 ER -
%0 Journal Article %A Tan, Ying-Ying %A Koolen, Jack H. %A Xia, Zheng-Jiang %T A Spectral Characterization of the S-Clique Extension of the Triangular Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 663-676 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/ %G en %F DMGT_2020_40_2_a18
Tan, Ying-Ying; Koolen, Jack H.; Xia, Zheng-Jiang. A Spectral Characterization of the S-Clique Extension of the Triangular Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 663-676. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a18/
[1] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs (Springer-Verlag, Berlin, 1989). doi:10.1007/978-3-642-74341-2
[2] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, Heidelberg, 2012). doi:10.1007/978-1-4614-1939-6
[3] L.C. Chang, The uniqueness and non-uniqueness of the triangular association scheme, Sci. Record 3 (1959) 604–613.
[4] S. Hayat, J.H. Koolen and M. Riaz, A spectral characterization of the s-clique extension of the square grid graphs, European J. Combin. 76 (2019) 104–116. doi:10.1016/j.ejc.2018.09.009
[5] C.D. Godsil, G. Royle, Algebraic Graph Theory (Springer-Verlag, Berlin, 2001). doi:10.1007/978-1-4613-0163-9
[6] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226–228 (1995) 593–616. doi:10.1016/0024-3795(95)00199-2
[7] A.J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly 70 (1963) 30–36. doi:10.1080/00029890.1963.11990038
[8] J.H. Koolen, B. Gebremichel and J.Y. Yang, Sesqui-regular graphs with fixed smallest eigenvalue. https://arxiv.org/abs/1904.01274v1
[9] P. Terwilliger, Algebraic Graph Theory, Lecture Notes, unpublished. https://icu-hsuzuki.github.io/lecturenote/
[10] E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226–228 (1995) 139–162. doi:10.1016/0024-3795(94)00346-F
[11] E.R. van Dam, J.H. Koolen and H. Tanaka, Distance-regular graphs, Electron. J. Combin. (2016) #DS22.
[12] J.Y. Yang and J.H. Koolen, On the order of regular graphs with fixed second largest eigenvalue. http://arxiv.org/abs/1809.01888v1