Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a15, author = {Pinheiro, Luc\'elia K. and Souza, Bruna S. and Trevisan, Vilmar}, title = {Determining {Graphs} by the {Complementary} {Spectrum}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {607--620}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a15/} }
TY - JOUR AU - Pinheiro, Lucélia K. AU - Souza, Bruna S. AU - Trevisan, Vilmar TI - Determining Graphs by the Complementary Spectrum JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 607 EP - 620 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a15/ LA - en ID - DMGT_2020_40_2_a15 ER -
%0 Journal Article %A Pinheiro, Lucélia K. %A Souza, Bruna S. %A Trevisan, Vilmar %T Determining Graphs by the Complementary Spectrum %J Discussiones Mathematicae. Graph Theory %D 2020 %P 607-620 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a15/ %G en %F DMGT_2020_40_2_a15
Pinheiro, Lucélia K.; Souza, Bruna S.; Trevisan, Vilmar. Determining Graphs by the Complementary Spectrum. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 607-620. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a15/
[1] F. Belardo, On the structure of bidegreed graphs with minimal spectral radius, Filomat 28 (2014) 1–10. doi:10.2298/FIL1401001B
[2] J.A. Carvalho, B.S. Souza, V. Trevisan and F.C. Tura, Exponentially many graphs have a Q-cospectral mate, Discrete Math. 340 (2017) 2079–2085. doi:10.1016/j.disc.2017.04.009
[3] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian I, Publ. Inst. Math. (Beograd) (N.S.) 85(99) (2009) 19–33. doi:10.2298/PIM0999019C
[4] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian. II, Linear Algebra Appl. 432 (2010) 2257–2272. doi:10.1016/j.laa.2009.05.020
[5] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian III, Appl. Anal. Discrete Math. 4 (2010) 156–166. doi:10.2298/AADM1000001C
[6] R. Fernandes, J. Judice and V. Trevisan, Complementary eigenvalues of graphs, Linear Algebra Appl. 527 (2017) 216–231. doi:10.1016/j.laa.2017.03.029
[7] C.D. Godsil and B.D. McKay, Constructing cospectral graphs, Aequationes Math. 25 (1982) 257–268. doi:10.1007/BF02189621
[8] W.H. Haemers, Are almost all graphs determined by their spectrum ?, Not. S. Afr. Math. Soc. 47 (2016) 42–45.
[9] A.J. Hoffman and J.H. Smith, On the spectral radii of topologically equivalent graphs, in: Proc. Second Czechoslovak Sympos., Prague, 1974, Recent Advances in Graph Theory (Academia, Prague, 1975) 273–281.
[10] B.D. McKay, On the spectral characterisation of trees, Ars Combin. 3 (1977) 219–232.
[11] E.R. Oliveira, D. Stevanović and V. Trevisan, Spectral radius ordering of starlike trees, Linear Multilinear Algebra (2018), in press. doi:10.1080/03081087.2018.1524435
[12] A.J. Schwenk, Almost all trees are cospectral, in: Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971, New Directions in the Theory of Graphs (Academic Press, New York, 1973) 275–307.
[13] A. Seeger, Complementarity eigenvalue analysis of connected graphs, Linear Algebra Appl. 543 (2018) 205–225. doi:10.1016/j.laa.2017.12.021
[14] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum ?, Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X
[15] E.R. van Dam and W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586. doi:10.1016/j.disc.2008.08.019