Turán’s Theorem Implies Stanley’s Bound
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 601-605

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph with m edges and let ρ be the largest eigenvalue of its adjacency matrix. It is shown that ρ≤√(2(1-⌊1/2+√(2m+1/4)⌋^-1)m,) improving the well-known bound of Stanley. Moreover, writing ω for the clique number of G and W_k for the number of its walks on k vertices, it is shown that the sequence {((1-1/ω)W_2^k)^1/2^k}_k=1^∞ is nonincreasing and converges to ρ.
Keywords: graph spectral radius, Stanley’s bound, Turán’s theorem, clique number, Motzkin-Straus’s inequality, walks
@article{DMGT_2020_40_2_a14,
     author = {Nikiforov, V.},
     title = {Tur\'an{\textquoteright}s {Theorem} {Implies} {Stanley{\textquoteright}s} {Bound}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {601--605},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a14/}
}
TY  - JOUR
AU  - Nikiforov, V.
TI  - Turán’s Theorem Implies Stanley’s Bound
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 601
EP  - 605
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a14/
LA  - en
ID  - DMGT_2020_40_2_a14
ER  - 
%0 Journal Article
%A Nikiforov, V.
%T Turán’s Theorem Implies Stanley’s Bound
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 601-605
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a14/
%G en
%F DMGT_2020_40_2_a14
Nikiforov, V. Turán’s Theorem Implies Stanley’s Bound. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 601-605. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a14/