Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a14, author = {Nikiforov, V.}, title = {Tur\'an{\textquoteright}s {Theorem} {Implies} {Stanley{\textquoteright}s} {Bound}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {601--605}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a14/} }
Nikiforov, V. Turán’s Theorem Implies Stanley’s Bound. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 601-605. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a14/
[1] R. Brualdi and A. Hoffman, On the spectral radius of (0, 1) matrices, Linear Algebra Appl. 65 (1985) 133–146. doi:10.1016/0024-3795(85)90092-8
[2] D. Cvetković, Graphs and their spectra, Ph.D. Thesis, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. 354–356 (1971) 1–50.
[3] C. Edwards and C. Elphick, Lower bounds for the clique and the chromatic number of a graph, Discrete Appl. Math. 5 (1983) 51–64. doi:10.1016/0166-218X(83)90015-X
[4] S. Friedland, The maximal eigenvalue of 0 − 1 matrices with prescribed number of ones, Linear Algebra Appl. 69 (1985) 33–69. doi:10.1016/0024-3795(85)90068-0
[5] S. Friedland, Bounds on the spectral radius of graphs with e edges, Linear Algebra Appl. 101 (1988) 88–86. doi:10.1016/0024-3795(88)90144-9
[6] T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533–540. doi:10.4153/CJM-1965-053-6
[7] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179–189. doi:10.1017/S0963548301004928
[8] V. Nikiforov, Walks and the spectral radius of graphs, Linear Algebra Appl. 418 (2006) 257–268. doi:10.1016/j.laa.2006.02.003
[9] E. Nosal, Eigenvalues of Graphs (Master’s Thesis, University of Calgary, 1970).
[10] P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl. 110 (1988) 43–53. doi:10.1016/0024-3795(83)90131-3
[11] A.F. Sidorenko, The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Mat. Zametki 41 (1987) 433–455, (English translation in Math. Notes Acad. Sci. USRR 41 (1987) 247–259). doi:10.1007/BF01158259
[12] R. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra Appl. 87 (1987) 267–269. doi:10.1016/0024-3795(87)90172-8
[13] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
[14] H.S. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B 40 (1986) 113–117. doi:10.1016/0095-8956(86)90069-9