Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a13, author = {Kirkland, Steve and Zhang, Xiaohong}, title = {Fractional {Revival} of {Threshold} {Graphs} {Under} {Laplacian} {Dynamics}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {585--600}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/} }
TY - JOUR AU - Kirkland, Steve AU - Zhang, Xiaohong TI - Fractional Revival of Threshold Graphs Under Laplacian Dynamics JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 585 EP - 600 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/ LA - en ID - DMGT_2020_40_2_a13 ER -
Kirkland, Steve; Zhang, Xiaohong. Fractional Revival of Threshold Graphs Under Laplacian Dynamics. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 585-600. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/
[1] R. Alvir, S. Dever, B. Lovitz, J. Myer, C. Tamon, Y. Xu and H. Zhan, Perfect state transfer in Laplacian quantum walk, J. Algebraic Combin. 43 (2016) 801–826. doi:10.1007/s10801-015-0642-x
[2] R.J. Angels-Canul, E. Norton, M. Opperman, C. Paribello, M. Russell and C. Tamon, Quantum perfect state transfer on weighted join graphs, Int. J. Quantum Inf. 07 (2009) 1429–1445. doi:10.1142/S0219749909006103
[3] R. Bachman, E. Fredette, J. Fuller, M. Landry, M. Opperman, C. Tamon and A. Tollefson, Perfect state transfer on quotient graphs, Quantum Inf. Comput. 12 (2012) 293–313.
[4] M. Bašić, M.D. Petković and D. Stevanović, Perfect state transfer in integral circulant graphs, Appl. Math. Lett. 22 (2009) 1117–1121. doi:10.1016/j.aml.2008.11.005
[5] P.-A. Bernard, A. Chan, É. Loranger, C. Tamon and L. Vinet, A graph with fractional revival, Phys. Lett. A 382 (2018) 259–264. doi:10.1016/j.physleta.2017.12.001
[6] D.M. Cardoso, C. Delorme and P. Rama, Laplacian eigenvectors and eigenvalues and almost equitable partitions, European J. Combin. 28 (2007) 665–673. doi:10.1016/j.ejc.2005.03.006
[7] A. Chan, G. Coutinho, C. Tamon, L. Vinet and H. Zhan, Quantum fractional revival on graphs (2018), manuscript. http://arxiv.org:1801.09654, 2018
[8] A. Chan and J. Teitelbaum, personal communication, (2018).
[9] W.-C. Cheung and C. Godsil, Perfect state transfer in cubelike graphs, Linear Algebra Appl. 435 (2011) 2468–2474. doi:10.1016/j.laa.2011.04.022
[10] M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay and A.J. Landahl, Perfect transfer of arbitrary states in quantum spin networks, Phys. Rev. A 71 (2005) 032312. doi:10.1103/PhysRevA.71.032312
[11] V.X. Genest, L. Vinet and A. Zhedanov, Quantum spin chains with fractional revival, Ann. Physics 371 (2016) 348–367. doi:10.1016/j.aop.2016.05.009
[12] C. Godsil, Algebraic Combinatorics (Chapman & Hall, New York, 1993).
[13] C. Godsil, State transfer on graphs, Discrete Math. 312 (2012) 129–147. doi:10.1016/j.disc.2011.06.032
[14] C. Godsil, When can perfect state transfer occur?, Electron. J. Linear Algebra 23 (2012) 877–890. doi:10.13001/1081-3810.1563
[15] A. Kay, A review of perfect state transfer and its application as a constructive tool, Int. J. Quantum Inf. 8 641 (2010) 641–676. doi:10.1142/S0219749910006514
[16] M. Kempton, G. Lippner and S.-T. Yau, Perfect state transfer on graphs with a potential, Quantum Inf. Comput. 17 (2017) 303–327. doi:10.1103/PhysRevA.83.012310
[17] S. Kirkland and S. Severini, Spin-system dynamics and fault detection in threshold networks, Phys. Rev. A 83 (2011) 012310.
[18] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics (North-Holland Publishing Co., Amsterdam, 1995).