Fractional Revival of Threshold Graphs Under Laplacian Dynamics
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 585-600.

Voir la notice de l'article provenant de la source Library of Science

We consider Laplacian fractional revival between two vertices of a graph X. Assume that it occurs at time τ between vertices 1 and 2. We prove that for the spectral decomposition L=∑_r=0^qθ_rE_r of the Laplacian matrix L of X, for each r = 0, 1, . . ., q, either E_re_1 = E_re_2, or E_re_1 = −E_re_2, depending on whether e^i_r equals to 1 or not. That is to say, vertices 1 and 2 are strongly cospectral with respect to L. We give a characterization of the parameters of threshold graphs that allow for Laplacian fractional revival between two vertices; those graphs can be used to generate more graphs with Laplacian fractional revival. We also characterize threshold graphs that admit Laplacian fractional revival within a subset of more than two vertices. Throughout we rely on techniques from spectral graph theory.
Keywords: Laplacian matrix, spectral decomposition, quantum information transfer, fractional revival
@article{DMGT_2020_40_2_a13,
     author = {Kirkland, Steve and Zhang, Xiaohong},
     title = {Fractional {Revival} of {Threshold} {Graphs} {Under} {Laplacian} {Dynamics}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {585--600},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/}
}
TY  - JOUR
AU  - Kirkland, Steve
AU  - Zhang, Xiaohong
TI  - Fractional Revival of Threshold Graphs Under Laplacian Dynamics
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 585
EP  - 600
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/
LA  - en
ID  - DMGT_2020_40_2_a13
ER  - 
%0 Journal Article
%A Kirkland, Steve
%A Zhang, Xiaohong
%T Fractional Revival of Threshold Graphs Under Laplacian Dynamics
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 585-600
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/
%G en
%F DMGT_2020_40_2_a13
Kirkland, Steve; Zhang, Xiaohong. Fractional Revival of Threshold Graphs Under Laplacian Dynamics. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 585-600. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a13/

[1] R. Alvir, S. Dever, B. Lovitz, J. Myer, C. Tamon, Y. Xu and H. Zhan, Perfect state transfer in Laplacian quantum walk, J. Algebraic Combin. 43 (2016) 801–826. doi:10.1007/s10801-015-0642-x

[2] R.J. Angels-Canul, E. Norton, M. Opperman, C. Paribello, M. Russell and C. Tamon, Quantum perfect state transfer on weighted join graphs, Int. J. Quantum Inf. 07 (2009) 1429–1445. doi:10.1142/S0219749909006103

[3] R. Bachman, E. Fredette, J. Fuller, M. Landry, M. Opperman, C. Tamon and A. Tollefson, Perfect state transfer on quotient graphs, Quantum Inf. Comput. 12 (2012) 293–313.

[4] M. Bašić, M.D. Petković and D. Stevanović, Perfect state transfer in integral circulant graphs, Appl. Math. Lett. 22 (2009) 1117–1121. doi:10.1016/j.aml.2008.11.005

[5] P.-A. Bernard, A. Chan, É. Loranger, C. Tamon and L. Vinet, A graph with fractional revival, Phys. Lett. A 382 (2018) 259–264. doi:10.1016/j.physleta.2017.12.001

[6] D.M. Cardoso, C. Delorme and P. Rama, Laplacian eigenvectors and eigenvalues and almost equitable partitions, European J. Combin. 28 (2007) 665–673. doi:10.1016/j.ejc.2005.03.006

[7] A. Chan, G. Coutinho, C. Tamon, L. Vinet and H. Zhan, Quantum fractional revival on graphs (2018), manuscript. http://arxiv.org:1801.09654, 2018

[8] A. Chan and J. Teitelbaum, personal communication, (2018).

[9] W.-C. Cheung and C. Godsil, Perfect state transfer in cubelike graphs, Linear Algebra Appl. 435 (2011) 2468–2474. doi:10.1016/j.laa.2011.04.022

[10] M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay and A.J. Landahl, Perfect transfer of arbitrary states in quantum spin networks, Phys. Rev. A 71 (2005) 032312. doi:10.1103/PhysRevA.71.032312

[11] V.X. Genest, L. Vinet and A. Zhedanov, Quantum spin chains with fractional revival, Ann. Physics 371 (2016) 348–367. doi:10.1016/j.aop.2016.05.009

[12] C. Godsil, Algebraic Combinatorics (Chapman & Hall, New York, 1993).

[13] C. Godsil, State transfer on graphs, Discrete Math. 312 (2012) 129–147. doi:10.1016/j.disc.2011.06.032

[14] C. Godsil, When can perfect state transfer occur?, Electron. J. Linear Algebra 23 (2012) 877–890. doi:10.13001/1081-3810.1563

[15] A. Kay, A review of perfect state transfer and its application as a constructive tool, Int. J. Quantum Inf. 8 641 (2010) 641–676. doi:10.1142/S0219749910006514

[16] M. Kempton, G. Lippner and S.-T. Yau, Perfect state transfer on graphs with a potential, Quantum Inf. Comput. 17 (2017) 303–327. doi:10.1103/PhysRevA.83.012310

[17] S. Kirkland and S. Severini, Spin-system dynamics and fault detection in threshold networks, Phys. Rev. A 83 (2011) 012310.

[18] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics (North-Holland Publishing Co., Amsterdam, 1995).