On the α-Spectral Radius of Uniform Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 559-575

Voir la notice de l'article provenant de la source Library of Science

For 0 ≤ α lt; 1 and a uniform hypergraph G, the α-spectral radius of G is the largest H-eigenvalue of α𝒟(G)+(1−α)𝒜(G), where 𝒟(G) and 𝒜(G) are the diagonal tensor of degrees and the adjacency tensor of G, respectively. We give upper bounds for the α-spectral radius of a uniform hypergraph, propose some transformations that increase the α-spectral radius, and determine the unique hypergraphs with maximum α-spectral radius in some classes of uniform hypergraphs.
Keywords: adjacency tensor, uniform hypergraph, extremal hypergraph, α-spectral radius, α-Perron vector
@article{DMGT_2020_40_2_a11,
     author = {Guo, Haiyan and Zhou, Bo},
     title = {On the {\ensuremath{\alpha}-Spectral} {Radius} of {Uniform} {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {559--575},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/}
}
TY  - JOUR
AU  - Guo, Haiyan
AU  - Zhou, Bo
TI  - On the α-Spectral Radius of Uniform Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 559
EP  - 575
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/
LA  - en
ID  - DMGT_2020_40_2_a11
ER  - 
%0 Journal Article
%A Guo, Haiyan
%A Zhou, Bo
%T On the α-Spectral Radius of Uniform Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 559-575
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/
%G en
%F DMGT_2020_40_2_a11
Guo, Haiyan; Zhou, Bo. On the α-Spectral Radius of Uniform Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 559-575. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/