On the α-Spectral Radius of Uniform Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 559-575.

Voir la notice de l'article provenant de la source Library of Science

For 0 ≤ α lt; 1 and a uniform hypergraph G, the α-spectral radius of G is the largest H-eigenvalue of α𝒟(G)+(1−α)𝒜(G), where 𝒟(G) and 𝒜(G) are the diagonal tensor of degrees and the adjacency tensor of G, respectively. We give upper bounds for the α-spectral radius of a uniform hypergraph, propose some transformations that increase the α-spectral radius, and determine the unique hypergraphs with maximum α-spectral radius in some classes of uniform hypergraphs.
Keywords: adjacency tensor, uniform hypergraph, extremal hypergraph, α-spectral radius, α-Perron vector
@article{DMGT_2020_40_2_a11,
     author = {Guo, Haiyan and Zhou, Bo},
     title = {On the {\ensuremath{\alpha}-Spectral} {Radius} of {Uniform} {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {559--575},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/}
}
TY  - JOUR
AU  - Guo, Haiyan
AU  - Zhou, Bo
TI  - On the α-Spectral Radius of Uniform Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 559
EP  - 575
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/
LA  - en
ID  - DMGT_2020_40_2_a11
ER  - 
%0 Journal Article
%A Guo, Haiyan
%A Zhou, Bo
%T On the α-Spectral Radius of Uniform Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 559-575
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/
%G en
%F DMGT_2020_40_2_a11
Guo, Haiyan; Zhou, Bo. On the α-Spectral Radius of Uniform Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 559-575. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a11/

[1] J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268–3292. doi:10.1016/j.laa.2011.11.018

[2] Y. Fan, Y. Tan, X. Peng and A. Liu, Maximizing spectral radii of uniform hyper-graphs with few edges, Discuss. Math. Graph Theory 36 (2016) 845–856. doi:10.7151/dmgt.1906

[3] S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extension, Linear Algebra Appl. 438 (2013) 738–749. doi:10.1016/j.laa.2011.02.042

[4] H. Guo and B. Zhou, On the spectral radius of uniform hypertrees, Linear Algebra Appl. 558 (2018) 236–249. doi:10.1016/j.laa.2018.07.035

[5] H. Guo and B. Zhou, On the α-spectral radius of graphs. ArXiv:1805.03456

[6] S. Hu, L. Qi and J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph, Linear Algebra Appl. 469 (2015) 1–27. doi:10.1016/j.laa.2014.11.020

[7] C. Li, Z. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra Appl. 481 (2015) 36–53. doi:10.1016/j.laa.2015.04.023

[8] H. Li, J. Shao and L. Qi, The extremal spectral radii of k-uniform supertrees, J Comb. Optim. 32 (2016) 741–764. doi:10.1007/s10878-015-9896-4

[9] H. Li, J. Zhou and C. Bu, Principal eigenvectors and spectral radii of uniform hypergraphs, Linear Algebra Appl. 544 (2018) 273–285. doi:10.1016/j.laa.2018.01.017

[10] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the First IEEE International Workshop on Computational Advances of Multi-Sensor Adaptive Processing, Puerto Vallarta (2005) 129–132. doi:10.110SICAMAP.2005.1574201

[11] H. Lin, H. Guo and B. Zhou, On the α-spectral radius of irregular uniform hyper-graphs, Linear Multilinear Algebra, 2019. doi:10.1080/03081087.2018.1502253

[12] H. Lin, B. Mo, B. Zhou and W. Weng, Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs, Appl. Math. Comput. 285 (2016) 217–227. doi:10.1016/j.amc.2016.03.016

[13] H. Lin, B. Zhou and B. Mo, Upper bounds for H- and Z-spectral radii of uniform hypergraphs, Linear Algebra Appl. 510 (2016) 205–221. doi:10.1016/j.laa.2016.08.009

[14] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81–107. doi:10.2298/AADM1701081N

[15] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the Aα-spectra of trees, Linear Algebra Appl. 520 (2017) 286–305. doi:10.1016/j.laa.2017.01.029

[16] C. Ouyang, L. Qi and X. Yuan, The first few unicyclic and bicyclic hypergraphs with largest spectral radii, Linear Algebra Appl. 527 (2017) 141–162. doi:10.1016/j.laa.2017.04.008

[17] K.J. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin. 30 (2014) 1233–1248. doi:10.1007/s00373-013-1340-x

[18] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302–1324. doi:10.1016/j.jsc.2005.05.007

[19] L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl. 439 (2013) 228–238. doi:10.1016/j.laa.2013.03.015

[20] L. Qi, H+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci. 12 (2014) 1045–1064. doi:10.4310/CMS.2014.v12.n6.a3

[21] L. Qi, J. Shao and Q. Wang, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl. 443 (2014) 215–227. doi:10.1016/j.laa.2013.11.008

[22] J.Y. Shao, A general product of tensors with applications, Linear Algebra Appl. 439 (2013) 2350–2366. doi:10.1016/j.laa.2013.07.010

[23] S.K. Simić and B. Zhou, Indices of trees with a prescribed diameter, Appl. Anal. Discrete Math. 1 (2007) 446–454. doi:10.2298/AADM0702446S

[24] P. Xiao, L. Wang and Y. Lu, The maximum spectral radii of uniform supertrees with given degree sequences, Linear Algebra Appl. 523 (2017) 33–45. doi:10.1016/j.laa.2017.02.018

[25] P. Xiao, L. Wang and Y. Du, The first two largest spectral radii of uniform supertrees with given diameter, Linear Algebra Appl. 536 (2018) 103–119. doi:10.1016/j.laa.2017.09.009

[26] P. Xiao and L. Wang, The maximum spectral radius of uniform hypergraphs with given number of pendant edges, Linear Multilinear Algebra. doi:10.1080/03081087.2018.1453471

[27] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517–2530. doi:10.1137/090778766

[28] X. Yuan, J. Shao and H. Shan, Ordering of some uniform supertrees with larger spectral radii, Linear Algebra Appl. 495 (2016) 206–222. doi:10.1016/j.laa.2016.01.031

[29] X. Yuan, M. Zhang and M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs, Linear Algebra Appl. 484 (2015) 540–549. doi:10.1016/j.laa.2015.06.023

[30] J. Zhang and J. Li, The maximum spectral radius of k-uniform hypergraphs with r pendent vertices, Linear Multilinear Algebra 67 (2019) 1062–1073. doi:10.1080/03081087.2018.1442811

[31] J. Zhou, L. Sun, W. Wang and C. Bu, Some spectral properties of uniform hyper-graphs, Electron. J. Combin. 21 (2014) #P4.24.