Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a10, author = {Fowler, Patrick W. and Gauci, John Baptist and Goedgebeur, Jan and Pisanski, Toma\v{z} and Sciriha, Irene}, title = {Existence of {Regular} {Nut} {Graphs} for {Degree} at {Most} 11}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {533--557}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a10/} }
TY - JOUR AU - Fowler, Patrick W. AU - Gauci, John Baptist AU - Goedgebeur, Jan AU - Pisanski, Tomaž AU - Sciriha, Irene TI - Existence of Regular Nut Graphs for Degree at Most 11 JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 533 EP - 557 VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a10/ LA - en ID - DMGT_2020_40_2_a10 ER -
%0 Journal Article %A Fowler, Patrick W. %A Gauci, John Baptist %A Goedgebeur, Jan %A Pisanski, Tomaž %A Sciriha, Irene %T Existence of Regular Nut Graphs for Degree at Most 11 %J Discussiones Mathematicae. Graph Theory %D 2020 %P 533-557 %V 40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a10/ %G en %F DMGT_2020_40_2_a10
Fowler, Patrick W.; Gauci, John Baptist; Goedgebeur, Jan; Pisanski, Tomaž; Sciriha, Irene. Existence of Regular Nut Graphs for Degree at Most 11. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 533-557. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a10/
[1] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of graphs: A database of interesting graphs, Discrete Appl. Math. 161 (2013) 311–314. doi:10.1016/j.dam.2012.07.018
[2] G. Brinkmann, J. Goedgebeur and B.D. McKay, Generation of cubic graphs, Discrete Math. Theor. Comput. Sci. 13 (2011) 69–80.
[3] K. Coolsaet, P.W. Fowler and J. Goedgebeur, homepage of Nutgen. http://caagt.ugent.be/nutgen/
[4] K. Coolsaet, P.W. Fowler and J. Goedgebeur, Generation and properties of nut graphs, MATCH Commun. Math. Comput. Chem. 80 (2018) 423–444.
[5] P.W. Fowler, B.T. Pickup, T.Z. Todorova, M. Borg and I. Sciriha, Omni-conducting and omni-insulating molecules, J. Chem. Phys. 140 (2014) 054115. doi:10.1063/1.4863559
[6] J.B. Gauci, T. Pisanski and I. Sciriha, Existence of regular nut graphs and the Fowler construction, (2019). arXiv preprint arXiv:1904.02229
[7] D. Holt and G.F. Royle, A census of small transitive groups and vertex-transitive graphs, J. Symbolic Comput. (2019), in press. doi:10.1016/j.jsc.2019.06.006
[8] B.D. McKay and G.F. Royle, The transitive graphs with at most 26 vertices, Ars Combin. 30 (1990) 161–176.
[9] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999) 137–146. doi:10.1002/(SICI)1097-0118(199902)30:2〈137::AID-JGT7〉3.0.CO;2-G
[10] I. Sciriha, On the construction of graphs of nullity one, Discrete Math. 181 (1998) 193–211. doi:10.1016/S0012-365X(97)00036-8
[11] I. Sciriha, On the rank of graphs, in: Combinatorics, Graph Theory and Algorithms, Vol. II, Y. Alavi, D.R. Lick and A. Schwenk (Ed(s)), (Springer, Michigan, 1999) 769–778.
[12] I. Sciriha, A characterization of singular graphs, Electron. J. Linear Algebra 16 (2007) 451–462. doi:10.13001/1081-3810.1215
[13] I. Sciriha, Coalesced and embedded nut graphs in singular graphs, Ars Math. Contemp. 1 (2008) 20–31. doi:10.26493/1855-3974.20.7cc
[14] I. Sciriha and I. Gutman, Nut graphs: maximally extending cores, Util. Math. 54 (1998) 257–272.