Graphs with All But Two Eigenvalues In [−2, 0]
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 379-391

Voir la notice de l'article provenant de la source Library of Science

The eigenvalues of a graph are those of its adjacency matrix. Recently, Cioabă, Haemers and Vermette characterized all graphs with all but two eigenvalues equal to −2 and 0. In this article, we extend their result by characterizing explicitly all graphs with all but two eigenvalues in the interval [−2, 0]. Also, we determine among them those that are determined by their spectrum.
Keywords: graph spectrum, complete multipartite graph, graph determined by its spectrum
@article{DMGT_2020_40_2_a1,
     author = {Abreu, Nair and Alencar, Jorge and Brondani, Andr\'e and de Lima, Leonardo and Oliveira, Carla},
     title = {Graphs with {All} {But} {Two} {Eigenvalues} {In} [\ensuremath{-}2, 0]},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {379--391},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a1/}
}
TY  - JOUR
AU  - Abreu, Nair
AU  - Alencar, Jorge
AU  - Brondani, André
AU  - de Lima, Leonardo
AU  - Oliveira, Carla
TI  - Graphs with All But Two Eigenvalues In [−2, 0]
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 379
EP  - 391
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a1/
LA  - en
ID  - DMGT_2020_40_2_a1
ER  - 
%0 Journal Article
%A Abreu, Nair
%A Alencar, Jorge
%A Brondani, André
%A de Lima, Leonardo
%A Oliveira, Carla
%T Graphs with All But Two Eigenvalues In [−2, 0]
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 379-391
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a1/
%G en
%F DMGT_2020_40_2_a1
Abreu, Nair; Alencar, Jorge; Brondani, André; de Lima, Leonardo; Oliveira, Carla. Graphs with All But Two Eigenvalues In [−2, 0]. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 379-391. http://geodesic.mathdoc.fr/item/DMGT_2020_40_2_a1/