Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a9, author = {Bogdanowicz, Zbigniew R.}, title = {On the {Minimum} {Number} of {Spanning} {Trees} in {Cubic} {Multigraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {149--159}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a9/} }
Bogdanowicz, Zbigniew R. On the Minimum Number of Spanning Trees in Cubic Multigraphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a9/
[1] Z.R. Bogdanowicz, Chordal 2 -connected graphs and spanning trees, J. Graph Theory 76 (2014) 224–235. doi:10.1002/jgt.21761
[2] Z.R. Bogdanowicz, On family of graphs with minimum number of spanning trees, Graphs Combin. 29 (2013) 1647–1652. doi:10.1007/s00373-012-1228-1
[3] Z.R. Bogdanowicz, Cubic graphs with minimum number of spanning trees, Ars Combin. 110 (2013) 227–238.
[4] Z.R. Bogdanowicz, Undirected simple connected graphs with minimum number of spanning trees, Discrete Math. 309 (2009) 3074–3082. doi:10.1016/j.disc.2008.08.010
[5] C.S. Cheng, Maximizing the total number of spanning trees in a graph: Two related problems in graph theory and optimum design theory, J. Combin. Theory Ser. B 31 (1981) 240–248. doi:10.1016/S0095-8956(81)80028-7
[6] A.K. Kelmans, On graphs with the maximum number of spanning trees, Random Structures Algorithms 9 (1996) 177–192. doi:10.1002/(SICI)1098-2418(199608/09)9:1/2〈177::AID-RSA11〉3.0.CO;2-L
[7] A.V. Kostochka, The number of spanning trees in graphs with a given degree sequence, Random Structures Algorithms 6 (1995) 269–274. doi:10.1002/rsa.3240060214
[8] S. Ok and C. Thomassen, On the minimum number of spanning trees in k-edge-connected graphs, J. Graph Theory 84 (2017) 286–296. doi:10.1002/jgt.22026
[9] L. Petingi and J. Rodriguez, A new technique for the characterization of graphs with a maximum number of spanning trees, Discrete Math. 244 (2002) 351–373. doi:10.1016/S0012-365X(01)00095-4