On the Minimum Number of Spanning Trees in Cubic Multigraphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 149-159
Voir la notice de l'article provenant de la source Library of Science
Let G2n, H2n be two non-isomorphic connected cubic multigraphs of order 2n with parallel edges permitted but without loops. Let t(G2n), t (H2n) denote the number of spanning trees in G2n, H2n, respectively. We prove that for n ≥ 3 there is the unique G2n such that t(G2n) lt; t(H2n) for any H2n. Furthermore, we prove that such a graph has t(G2n) = 522n−3 spanning trees. Based on our results we give a conjecture for the unique r-regular connected graph H2n of order 2n and odd degree r that minimizes the number of spanning trees.
Keywords:
cubic multigraph, spanning tree, regular graph, enumeration
@article{DMGT_2020_40_1_a9,
author = {Bogdanowicz, Zbigniew R.},
title = {On the {Minimum} {Number} of {Spanning} {Trees} in {Cubic} {Multigraphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {149--159},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a9/}
}
Bogdanowicz, Zbigniew R. On the Minimum Number of Spanning Trees in Cubic Multigraphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a9/