The Compared Costs of Domination Location-Domination and Identification
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 127-147
Voir la notice de l'article provenant de la source Library of Science
Let G = (V, E) be a finite graph and r ≥ 1 be an integer. For v ∈ V, let Br(v) = x ∈ V : d(v, x) ≤ r be the ball of radius r centered at v. A set C ⊆ V is an r-dominating code if for all v ∈ V, we have Br(v) ∩ C ≠ ∅; it is an r-locating-dominating code if for all v ∈ V, we have Br(v) ∩ C ≠ ∅, and for any two distinct non-codewords x ∈ V C, y ∈ V C, we have Br(x) ∩ C ≠ Br(y) ∩ C; it is an r-identifying code if for all v ∈ V, we have Br(v) ∩ C ≠ ∅, and for any two distinct vertices x ∈ V, y ∈ V, we have Br(x) ∩ C ≠ Br(y) ∩ C. We denote by γr(G) (respectively, ldr(G) and idr(G)) the smallest possible cardinality of an r-dominating code (respectively, an r-locating-dominating code and an r-identifying code). We study how small and how large the three differences idr(G)−ldr(G), idr(G)−γr(G) and ldr(G) − γr(G) can be.
Keywords:
graph theory, dominating set, locating-dominating code, identifying code, twin-free graph
@article{DMGT_2020_40_1_a8,
author = {Hudry, Olivier and Lobstein, Antoine},
title = {The {Compared} {Costs} of {Domination} {Location-Domination} and {Identification}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {127--147},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a8/}
}
TY - JOUR AU - Hudry, Olivier AU - Lobstein, Antoine TI - The Compared Costs of Domination Location-Domination and Identification JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 127 EP - 147 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a8/ LA - en ID - DMGT_2020_40_1_a8 ER -
Hudry, Olivier; Lobstein, Antoine. The Compared Costs of Domination Location-Domination and Identification. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 127-147. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a8/