Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a8, author = {Hudry, Olivier and Lobstein, Antoine}, title = {The {Compared} {Costs} of {Domination} {Location-Domination} and {Identification}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {127--147}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a8/} }
TY - JOUR AU - Hudry, Olivier AU - Lobstein, Antoine TI - The Compared Costs of Domination Location-Domination and Identification JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 127 EP - 147 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a8/ LA - en ID - DMGT_2020_40_1_a8 ER -
Hudry, Olivier; Lobstein, Antoine. The Compared Costs of Domination Location-Domination and Identification. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 127-147. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a8/
[1] C. Berge, Graphes (Gauthier-Villars, Paris, 1983).
[2] C. Berge, Graphs (North-Holland Publishing Co., Amsterdam, 1985).
[3] N. Bertrand, Codes identifiants et codes localisateurs-dominateurs sur certains graphes, Mémoire de stage de maîtrise, ENST (Paris, France, 2001).
[4] I. Charon, O. Hudry and A. Lobstein, Possible cardinalities for identifying codes in graphs, Australas. J. Combin. 32 (2005) 177–195.
[5] I. Charon, O. Hudry and A. Lobstein, Possible cardinalities for locating-dominating codes in graphs, Australas. J. Combin. 34 (2006) 23–32.
[6] I. Charon, O. Hudry and A. Lobstein, Extremal cardinalities for identifying and locating-dominating codes in graphs, Discrete Math. 307 (2007) 356–366. doi:10.1016/j.disc.2005.09.027
[7] C.J. Colbourn, P.J. Slater and L.K. Stewart, Locating dominating sets in series parallel networks, Congr. Numer. 56 (1987) 135–162.
[8] R. Diestel, Graph Theory (Springer-Verlag, Berlin, 2005).
[9] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287–293. doi:10.1007/BF01848079
[10] F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau and P. Valicov, Extremal graphs for the identifying code problem, European J. Combin. 32 (2011) 628–638. doi:10.1016/j.ejc.2011.01.002
[11] S. Gravier, R. Klasing and J. Moncel, Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs, Algorithmic Oper. Res. 3 (2008) 43–50.
[12] S. Gravier and J. Moncel, On graphs having a V \ { x } set as an identifying code, Discrete Math. 307 (2007) 432–434. doi:10.1016/j.disc.2005.09.035
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[14] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599–611. doi:10.1109/18.661507
[15] A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs, a bibliography . https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
[16] O. Ore, Theory of Graphs (American Mathematical Society, Providence, 1962). doi:10.1090/coll/038
[17] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23–32. doi:10.1002/jgt.3190060104
[18] P.J. Slater, Domination and location in graphs, Research Report 93 (National University of Singapore, 1983).