Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a6, author = {Tian, Tao and Xiong, Liming}, title = {2-Connected {Hamiltonian} {Claw-Free} {Graphs} {Involving} {Degree} {Sum} of {Adjacent} {Vertices}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {85--106}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a6/} }
TY - JOUR AU - Tian, Tao AU - Xiong, Liming TI - 2-Connected Hamiltonian Claw-Free Graphs Involving Degree Sum of Adjacent Vertices JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 85 EP - 106 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a6/ LA - en ID - DMGT_2020_40_1_a6 ER -
Tian, Tao; Xiong, Liming. 2-Connected Hamiltonian Claw-Free Graphs Involving Degree Sum of Adjacent Vertices. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 85-106. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a6/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–45. doi:10.1016/S0012-365X(95)00149-Q
[3] P.A. Catlin, Z. Han and H.-J Lai, Graphs without spanning Eulerian trails, Discrete Math. 160 (1996) 81–91. doi:10.1002/jgt.22120
[4] Z.-H. Chen, Hamiltonicity and degrees of adjacent vertices in claw-free graphs, J. Graph Theory 86 (2017) 193–212. doi:10.1002/jgt.22120
[5] G.H. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1981) 221–227. doi:10.1016/0095-8956(84)90054-6
[6] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs — A survey, Discrete Math. 164 (1997) 87–147. doi:10.1016/S0012-365X(96)00045-3
[7] O. Favaron, E. Flandrin, H. Li and Z. Ryjáček, Clique covering and degree conditions for Hamiltonicity in claw-free graphs, Discrete Math. 236 (2001) 65–80. doi:10.1016/S0012-365X(00)00432-5
[8] R. Gould, Recent advances on the Hamiltonian problem: Survey III, Graphs Combin. 30 (2014) 1–46. doi:10.1007/s00373-013-1377-x
[9] F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–710. doi:10.4153/CMB-1965-051-3
[10] O. Kovářík, M. Mulač and Z. Ryjáček, A note on degree conditions for Hamiltonicity in 2 -connected claw-free graphs, Discrete Math. 244 (2002) 253–268. doi:10.1016/S0012-365X(01)00088-7
[11] H. Li, M. Lu, F. Tian and B. Wei, Hamiltonian cycles in 2 -connected claw-free graphs with at most 5 δ − 5 vertices, Congr. Numer. 122 (1996) 184–202.
[12] M.M. Matthews and D.P. Sumner, Longest path and cycle in K 1,3 -free graphs, J. Graph Theory 9 (1985) 269–277. doi:10.1002/jgt.3190090208
[13] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55. doi:10.2307/2308928
[14] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224. doi:10.1006/jctb.1996.1732
[15] Y. Shao, Claw-free graphs and line graphs, Ph.D dissertation (West Virginia University, 2005).
[16] H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229–239. doi:10.1016/0012-365X(92)00063-W
[17] C.Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988) 209–216. doi:10.1002/jgt.3190120211