On the Metric Dimension of Directed and Undirected Circulant Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 67-76.

Voir la notice de l'article provenant de la source Library of Science

The undirected circulant graph C_n(±1, ±2, . . ., ±t) consists of vertices v_0, v_1, . . ., v_n−1 and undirected edges v_iv_i+j, where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ t (2 ≤ t ≤ n/2), and the directed circulant graph C_n(1, t) consists of vertices v_0, v_1, . . ., v_n−1 and directed edges v_iv_i+1, v_iv_i+t, where 0 ≤ i ≤ n − 1 (2 ≤ t ≤ n−1), the indices are taken modulo n. Results on the metric dimension of undirected circulant graphs C_n(±1, ±t) are available only for special values of t. We give a complete solution of this problem for directed graphs C_n(1, t) for every t ≥ 2 if n ≥ 2t^2. Grigorious et al. [On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54] presented a conjecture saying that dim (C_n(±1, ±2, . . ., ±t)) = t + p − 1 for n = 2tk + t + p, where 3 ≤ p ≤ t + 1. We disprove it by showing that dim (C_n(±1, ±2, . . ., ±t)) ≤ t + p+1/2 for n = 2tk + t + p, where t ≥ 4 is even, p is odd, 1 ≤ p ≤ t + 1 and k ≥ 1.
Keywords: metric dimension, resolving set, circulant graph, distance
@article{DMGT_2020_40_1_a4,
     author = {Vetr{\'\i}k, Tom\'a\v{s}},
     title = {On the {Metric} {Dimension} of {Directed} and {Undirected} {Circulant} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a4/}
}
TY  - JOUR
AU  - Vetrík, Tomáš
TI  - On the Metric Dimension of Directed and Undirected Circulant Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 67
EP  - 76
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a4/
LA  - en
ID  - DMGT_2020_40_1_a4
ER  - 
%0 Journal Article
%A Vetrík, Tomáš
%T On the Metric Dimension of Directed and Undirected Circulant Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 67-76
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a4/
%G en
%F DMGT_2020_40_1_a4
Vetrík, Tomáš. On the Metric Dimension of Directed and Undirected Circulant Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a4/

[1] A. Borchert and S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Util. Math. 106 (2018) 125–147.

[2] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113. doi:10.1016/S0166-218X(00)00198-0

[3] K. Chau and S. Gosselin, The metric dimension of circulant graphs and their Cartesian products, Opuscula Math. 37 (2017) 509–534. doi:10.7494/OpMath.2017.37.4.509

[4] C. Grigorious, P. Manuel, M. Miller, B. Rajan and S. Stephen, On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54. doi:10.1016/j.amc.2014.09.045

[5] M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sin. Eng. Ser. 32 (2016) 1067–1072. doi:10.1007/s10255-016-0627-0

[6] M. Imran, A.Q. Baig, S.A. Ul. Hag Bokhary and I. Javaid, On the metric dimension of circulant graphs, Appl. Math. Lett. 25 (2012) 320–325. doi:10.1016/j.aml.2011.09.008

[7] I. Javaid, M.N. Azhar and M. Salman, Metric dimension and determining number of Cayley graphs, World Appl. Sci. J. 18 (2012) 1800–1812.

[8] I. Javaid, M.T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008) 21–33.

[9] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229. doi:10.1016/0166-218X(95)00106-2

[10] R.A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Vision Graphics Image Process. 25 (1984) 113–121. doi:10.1016/0734-189X(84)90051-3

[11] M. Salman, I. Javaid and M.A. Chaudhry, Resolvability in circulant graphs, Acta Math. Sin. Eng. Ser. 28 (2012) 1851–1864. doi:10.1007/s10114-012-0417-4

[12] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman and M. Bača, The metric dimension of the lexicographic product of graphs, Discrete Math. 313 (2013) 1045–1051. doi:10.1016/j.disc.2013.01.021

[13] T. Vetrík, The metric dimension of circulant graphs, Canad. Math. Bull. 60 (2017) 206–216. doi:10.4153/CMB-2016-048-1