Conflict-Free Vertex-Connections of Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 51-65.

Voir la notice de l'article provenant de la source Library of Science

A path in a vertex-colored graph is called conflict-free if there is a color used on exactly one of its vertices. A vertex-colored graph is said to be conflict-free vertex-connected if any two vertices of the graph are connected by a conflict-free path. This paper investigates the question: for a connected graph G, what is the smallest number of colors needed in a vertex-coloring of G in order to make G conflict-free vertex-connected. As a result, we get that the answer is easy for 2-connected graphs, and very difficult for connected graphs with more cut-vertices, including trees.
Keywords: vertex-coloring, conflict-free vertex-connection, 2-connected graph, tree
@article{DMGT_2020_40_1_a3,
     author = {Li, Xueliang and Zhang, Yingying and Zhu, Xiaoyu and Mao, Yaping and Zhao, Haixing and Jendrol{\textquoteright}, Stanislav},
     title = {Conflict-Free {Vertex-Connections} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/}
}
TY  - JOUR
AU  - Li, Xueliang
AU  - Zhang, Yingying
AU  - Zhu, Xiaoyu
AU  - Mao, Yaping
AU  - Zhao, Haixing
AU  - Jendrol’, Stanislav
TI  - Conflict-Free Vertex-Connections of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 51
EP  - 65
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/
LA  - en
ID  - DMGT_2020_40_1_a3
ER  - 
%0 Journal Article
%A Li, Xueliang
%A Zhang, Yingying
%A Zhu, Xiaoyu
%A Mao, Yaping
%A Zhao, Haixing
%A Jendrol’, Stanislav
%T Conflict-Free Vertex-Connections of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 51-65
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/
%G en
%F DMGT_2020_40_1_a3
Li, Xueliang; Zhang, Yingying; Zhu, Xiaoyu; Mao, Yaping; Zhao, Haixing; Jendrol’, Stanislav. Conflict-Free Vertex-Connections of Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 51-65. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).

[2] H. Chang, Z. Huang, X. Li, Y. Mao and H. Zhao, Nordhaus-Gaddum-type theorem for conflict-free connection number of graphs . arXiv:1705.08316 [math.CO].

[3] H. Chang, M. Ji, X. Li and J. Zhang, Conflict-free connection of trees. arXiv:1712.10010 [math.CO]

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2018) 85–98.

[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. doi:10.1002/net.20296

[6] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535. doi:10.1016/j.tcs.2011.04.032

[7] J. Czap, S. Jendrol’ and J. Valiska, Conflict-free connections of graphs, Discuss. Math. Graph Theory 38 (2018) 911–920. doi:10.7151/dmgt.2036

[8] B. Deng, W. Li, X. Li, Y. Mao and H. Zhao, Conflict-free connection numbers of line graphs, Lecture Notes in Comput. Sci. 10627 (2017) 141–151. doi:10.1007/978-3-319-71150-8_14

[9] A.V. Iyer, H.D. Ratli and G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988) 225–229. doi:10.1016/0020-0190(88)90194-9

[10] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191.

[11] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2-connected graphs, Discrete Appl. Math. 173 (2014) 62–69. doi:10.1016/j.dam.2014.04.002

[12] X. Li, Y. Mao and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014) 213–223.

[13] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307–313. doi:10.7151/dmgt.1664

[14] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2

[15] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0

[16] Z. Li and B. Wu, On the maximum value of conflict-free vertex-connection number of graphs. arxiv: 1709.01225 [math.CO]

[17] H. Liu, Â. Mestre and T. Sousa, Rainbow vertex k-connection in graphs, Discrete Appl. Math. 161 (2013) 2549–2555. doi:10.1016/j.dam.2013.04.025