Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a3, author = {Li, Xueliang and Zhang, Yingying and Zhu, Xiaoyu and Mao, Yaping and Zhao, Haixing and Jendrol{\textquoteright}, Stanislav}, title = {Conflict-Free {Vertex-Connections} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {51--65}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/} }
TY - JOUR AU - Li, Xueliang AU - Zhang, Yingying AU - Zhu, Xiaoyu AU - Mao, Yaping AU - Zhao, Haixing AU - Jendrol’, Stanislav TI - Conflict-Free Vertex-Connections of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 51 EP - 65 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/ LA - en ID - DMGT_2020_40_1_a3 ER -
%0 Journal Article %A Li, Xueliang %A Zhang, Yingying %A Zhu, Xiaoyu %A Mao, Yaping %A Zhao, Haixing %A Jendrol’, Stanislav %T Conflict-Free Vertex-Connections of Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 51-65 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/ %G en %F DMGT_2020_40_1_a3
Li, Xueliang; Zhang, Yingying; Zhu, Xiaoyu; Mao, Yaping; Zhao, Haixing; Jendrol’, Stanislav. Conflict-Free Vertex-Connections of Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 51-65. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a3/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] H. Chang, Z. Huang, X. Li, Y. Mao and H. Zhao, Nordhaus-Gaddum-type theorem for conflict-free connection number of graphs . arXiv:1705.08316 [math.CO].
[3] H. Chang, M. Ji, X. Li and J. Zhang, Conflict-free connection of trees. arXiv:1712.10010 [math.CO]
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2018) 85–98.
[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. doi:10.1002/net.20296
[6] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535. doi:10.1016/j.tcs.2011.04.032
[7] J. Czap, S. Jendrol’ and J. Valiska, Conflict-free connections of graphs, Discuss. Math. Graph Theory 38 (2018) 911–920. doi:10.7151/dmgt.2036
[8] B. Deng, W. Li, X. Li, Y. Mao and H. Zhao, Conflict-free connection numbers of line graphs, Lecture Notes in Comput. Sci. 10627 (2017) 141–151. doi:10.1007/978-3-319-71150-8_14
[9] A.V. Iyer, H.D. Ratli and G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988) 225–229. doi:10.1016/0020-0190(88)90194-9
[10] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191.
[11] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2-connected graphs, Discrete Appl. Math. 173 (2014) 62–69. doi:10.1016/j.dam.2014.04.002
[12] X. Li, Y. Mao and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014) 213–223.
[13] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307–313. doi:10.7151/dmgt.1664
[14] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[15] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0
[16] Z. Li and B. Wu, On the maximum value of conflict-free vertex-connection number of graphs. arxiv: 1709.01225 [math.CO]
[17] H. Liu, Â. Mestre and T. Sousa, Rainbow vertex k-connection in graphs, Discrete Appl. Math. 161 (2013) 2549–2555. doi:10.1016/j.dam.2013.04.025