A Short Proof for a Lower Bound on the Zero Forcing Number
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 355-360
Voir la notice de l'article provenant de la source Library of Science
We provide a short proof of a conjecture of Davila and Kenter concerning a lower bound on the zero forcing number Z(G) of a graph G. More specifically, we show that Z(G) ≥ (g − 2)(δ − 2) + 2 for every graph G of girth g at least 3 and minimum degree δ at least 2.
Keywords:
zero forcing, girth, Moore bound
@article{DMGT_2020_40_1_a24,
author = {F\"urst, Maximilian and Rautenbach, Dieter},
title = {A {Short} {Proof} for a {Lower} {Bound} on the {Zero} {Forcing} {Number}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {355--360},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a24/}
}
TY - JOUR AU - Fürst, Maximilian AU - Rautenbach, Dieter TI - A Short Proof for a Lower Bound on the Zero Forcing Number JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 355 EP - 360 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a24/ LA - en ID - DMGT_2020_40_1_a24 ER -
Fürst, Maximilian; Rautenbach, Dieter. A Short Proof for a Lower Bound on the Zero Forcing Number. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 355-360. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a24/