Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a20, author = {Manuel, Paul and Klav\v{z}ar, Sandi and Xavier, Antony and Arokiaraj, Andrew and Thomas, Elizabeth}, title = {Strong {Geodetic} {Problem} in {Networks}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {307--321}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a20/} }
TY - JOUR AU - Manuel, Paul AU - Klavžar, Sandi AU - Xavier, Antony AU - Arokiaraj, Andrew AU - Thomas, Elizabeth TI - Strong Geodetic Problem in Networks JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 307 EP - 321 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a20/ LA - en ID - DMGT_2020_40_1_a20 ER -
%0 Journal Article %A Manuel, Paul %A Klavžar, Sandi %A Xavier, Antony %A Arokiaraj, Andrew %A Thomas, Elizabeth %T Strong Geodetic Problem in Networks %J Discussiones Mathematicae. Graph Theory %D 2020 %P 307-321 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a20/ %G en %F DMGT_2020_40_1_a20
Manuel, Paul; Klavžar, Sandi; Xavier, Antony; Arokiaraj, Andrew; Thomas, Elizabeth. Strong Geodetic Problem in Networks. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 307-321. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a20/
[1] M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002) 587–591. doi:10.1080/00207160210954
[2] J. Bosák, Geodetic graphs, in: Combinatorics Proc. Fifth Hungarian Colloq., Keszthely (1976) Vol. I, Colloq. Math. Soc. János Bolyai 18 (1978) 151–172.
[3] B. Brešar, S. Klavžar and A. Tepeh Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete Math. 308 (2008) 5555–5561. doi:10.1016/j.disc.2007.10.007
[4] B. Brešar, M. Kovše and A. Tepeh, Geodetic sets in graphs, in: Structural Analysis of Complex Networks, Birkhäuser/Springer, New York (2011) 197–218. doi:10.1007/978-0-8176-4789-6_8
[5] G.J. Chang, L.-D. Tong and H.-T. Wang, Geodetic spectra of graphs, European J. Combin. 25 (2004) 383–391. doi:10.1016/j.ejc.2003.09.010
[6] G. Chartrand, F. Harary, H.C. Swart and P. Zhang, Geodomination in graphs, Bull. Inst. Combin. Appl. 31 (2001) 51–59.
[7] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in graphs, Discuss. Math. Graph Theory 20 (2000) 129–138. doi:10.7151/dmgt.1112
[8] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1–6. doi:10.1002/net.10007
[9] G. Chartrand and P. Zhang, The geodetic number of an oriented graph, European J. Combin. 21 (2000) 181–189. doi:10.1006/eujc.1999.0301
[10] M.C. Dourado, F. Protti, D. Rautenbach and J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Math. 310 (2010) 832–837. doi:10.1016/j.disc.2009.09.018
[11] T. Ekim, A. Erey, P. Heggernes, P. van’t Hof and D. Meister, Computing minimum geodetic sets of proper interval graphs, Lecture Notes in Comput. Sci. 7256 (2012) 279–290. doi:10.1007/978-3-642-29344-3_24
[12] A. Estrada-Moreno, J.A. Rodríguez-Velázquez and E.D. Rodríquez-Bazan, On generalized Sierpiński graphs, Discuss. Math. Graph Theory 37 (2017) 547–560. doi:10.7151/dmgt.1945
[13] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217–223. doi:10.1016/0012-365X(85)90174-8
[14] A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256–262. doi:10.1016/j.dam.2005.03.002
[15] S.L. Fitzpatrick, The isometric path number of the Cartesian product of paths, Congr. Numer. 137 (1999) 109–119.
[16] M.R. Garey and D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, NY, 1990).
[17] A. Goldner and F. Harary, Note on a smallest non-Hamiltonian maximal planar graph, Bull. Malays. Math. Sci. Soc. 6 (1975) 41–42.
[18] V.M. Goudar, K.S. Ashalatha, Venkatesha and M.H. Muddebihal, On the geodetic number of line graph, Int. J. Contemp. Math. Sci. 7 (2012) 2289–2295.
[19] P. Hansen and N. van Omme, On pitfalls in computing the geodetic number of a graph, Optim. Lett. 1 (2007) 299–307. doi:10.1007/s11590-006-0032-3
[20] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling 17 (1993) 89–95. doi:10.1016/0895-7177(93)90259-2
[21] A.M. Hinz, K. Klavžar, U. Milutinović, D. Parisse and C. Petr, Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence, European J. Combin. 26 (2005) 693–708. doi:10.1016/j.ejc.2004.04.009
[22] A.M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi—Myths and Maths (Birkhäuser/Springer, Basel, 2013).
[23] A.M. Hinz, S. Klavžar and S.S. Zemljič, A survey and classification of Sierpiński-type graphs, Discrete Appl. Math. 217 (2017) 565–600. doi:10.1016/j.dam.2016.09.024
[24] A. Hansberg and L. Volkmann, On the geodetic and geodetic domination numbers of a graph, Discrete Math. 310 (2010) 2140–2146. doi:10.1016/j.disc.2010.04.013
[25] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo and C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005) 139–154. doi:10.1016/j.disc.2004.08.039
[26] J.-T. Hung, L.-D. Tong and H.-T. Wang, The hull and geodetic numbers of orientations of graphs, Discrete Math. 309 (2009) 2134–2139. doi:10.1016/j.disc.2008.04.034
[27] V. Iršič, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, Graphs Combin. 34 (2018) 443–456.
[28] S. Klavžar and U. Milutinović, Graphs S ( n, k ) and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997) 95–104.
[29] Y. Liao, Y. Hou and X. Shen, Tutte polynomial of the Apollonian network, J. Stat. Mech., October (2014) P10043. doi:10.1088/1742-5468/2014/10/P10043
[30] P. Manuel, S. Klavžar, A. Xavier, A. Arokiaraj and E. Thomas, Strong edge geodetic problem in networks, Open Math. 15 (2017) 1225–1235. doi:10.1515/math-2017-0101
[31] O. Ore, Theory of Graphs (Amer. Math. Soc., Providence, R.I., 1962). doi:10.1090/coll/038
[32] I.M. Pelayo, Geodesic Convexity in Graphs, Springer Briefs in Mathematics (Springer, New York, 2013). doi:10.1007/978-1-4614-8699-2
[33] G.L. Pellegrini, L. de Arcangelis, H.J. Herrmann and C. Perrone-Capano, Modelling the brain as an Apollonian network (27 Jan 2007). arXiv:q-bio/0701045 [q-bio.NC]
[34] J.A. Solo, R.A. Márquez and L.M. Friedler, Products of geodesic graphs and the geodetic number of products, Discuss. Math. Graph Theory 35 (2015) 35–42. doi:10.7151/dmgt.1774
[35] L.-D. Tong, Geodetic sets and Steiner sets in graphs, Discrete Math. 309 (2009) 4205–4207. doi:10.1016/j.disc.2008.10.010
[36] V.A. VoblyȈı, Enumeration of labeled geodetic planar graphs, Mat. Zametki 97 (2015) 336–341. doi:10.4213/mzm10549
[37] F.-H. Wang, Y.-L. Wang and J.-M. Chang, The lower and upper forcing geodetic numbers of block-cactus graphs, European J. Oper. Res. 175 (2006) 238–245. doi:10.1016/j.ejor.2005.04.026
[38] J. Zhang, W. Sun and G. Xu, Enumeration of spanning trees on Apollonian networks, J. Stat. Mech., September (2013) P09015. doi:10.1088/1742-5468/2013/09/P09015
[39] Z. Zhang, B. Wu and F. Comellas, The number of spanning trees in Apollonian networks, Discrete Appl. Math. 169 (2014) 206–213. doi:10.1016/j.dam.2014.01.015