Decompositions of Cubic Traceable Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 35-49

Voir la notice de l'article provenant de la source Library of Science

A traceable graph is a graph with a Hamilton path. The 3-Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a 2-regular graph and a matching. We prove the conjecture for cubic traceable graphs.
Keywords: decomposition, cubic traceable graph, spanning tree, matching, 2-regular graph
@article{DMGT_2020_40_1_a2,
     author = {Liu, Wenzhong and Li, Panpan},
     title = {Decompositions of {Cubic} {Traceable} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a2/}
}
TY  - JOUR
AU  - Liu, Wenzhong
AU  - Li, Panpan
TI  - Decompositions of Cubic Traceable Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 35
EP  - 49
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a2/
LA  - en
ID  - DMGT_2020_40_1_a2
ER  - 
%0 Journal Article
%A Liu, Wenzhong
%A Li, Panpan
%T Decompositions of Cubic Traceable Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 35-49
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a2/
%G en
%F DMGT_2020_40_1_a2
Liu, Wenzhong; Li, Panpan. Decompositions of Cubic Traceable Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a2/