Decompositions of Cubic Traceable Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 35-49
Voir la notice de l'article provenant de la source Library of Science
A traceable graph is a graph with a Hamilton path. The 3-Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a 2-regular graph and a matching. We prove the conjecture for cubic traceable graphs.
Keywords:
decomposition, cubic traceable graph, spanning tree, matching, 2-regular graph
@article{DMGT_2020_40_1_a2,
author = {Liu, Wenzhong and Li, Panpan},
title = {Decompositions of {Cubic} {Traceable} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {35--49},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a2/}
}
Liu, Wenzhong; Li, Panpan. Decompositions of Cubic Traceable Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a2/